Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 278 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
˺¯ËäÈ

vººÓºËÓÒË
Ó˺¹¯ËËãËÓ
Óº°Ë®
iã«m²ª¯äÒºm©²º¹Ë¯Èº¯ºm
A
Ò
B
ÏÈ ÈÓÓ©²mÓÒȯӺä¹¯º
°¯ÈÓ°mËÒäËËä˰º°ººÓºËÓÒË
2
4
1
ˆ
ˆˆ
ˆ
ˆ
ˆ
a
aa
ABBABA

iº}ÈÏÈËã°mº
°
cȰ°äº¯Òä mººË ºmº¯« Ó˪¯äÒºm º¹Ë¯Èº¯
(

)(

)
QAA BBi
aa
=− +
τ
Ë
τ
 ÓË}ºº¯©® mË˰mËÓÓ©® ¹È¯ÈäË¯ ã« }ºº¯ºº ª¯äÒºmº
°º¹¯«ÎËÓÓ©äËº¹Ë¯Èº¯mÒÈ
iBBAAQ
aa
)
ˆˆ
()
ˆˆ
(
ˆ
=
+
τ

Òº ª¯äÒºm©äÒ «mã«°« °ãËÒË Ë©¯Ë º¹Ë¯Èº¯È
,
,
,
AA BB
aa

~ÈäËÒä È}ÎË º º¹Ë¯Èº¯

QQ
+
ª¯äÒºmÒº
a Q Qa Qa Qa Q

,
+
=≥
0
väº}ÈÏÈËã°mº˺¯Ëä©¹
°

°
{©¯ÈÏÒäº¹Ë¯Èº¯

QQ
+
˯ËÏº¹Ë¯Èº¯©
,
,
,
AA BB
aa
¹ºãÒä

((

)(

))((

)(

))
(

)(

)
((

)(

)(

)(

))
(

)(

)(

).
QQ A A B B i A A B B i
AA BB
AA BB BB AA i
A A B B AB BA i
aaaa
aa
aa aa
aa
+
=− −− +− =
=− + +
+− =
=− + +
ττ
τ
τ
ττ
22 2
22 2
°
|ºÏÓÈÒä
(

)
CABBAi
=−
¹¯ÒËäºäËÒäºÒÏ¹¯Ë©˺¯ÈmËÓ°mÈ
°ãËË ª¯äÒºmº° º¹Ë¯Èº¯È
C
}È} ãÒÓˮӺ® }ºäÒÓÈÒÒ ª¯äÒºm©²
º¹Ë¯Èº¯ºmº°ÒÈËä˹˯°¯ËÓËËÏÓÈËÓÒËª¯äÒºmÈº¹Ë¯Èº¯È

QQ
+


(

)

QQ A B a AB BAia
BCA
a
aa
a
a
a
+
=+ + =
=−+
ττ
ττ
2
2

ºãËÓÓºË ÏÓÈËÓÒË

QQ
a
+
˰ mË˰mËÓÓ©® }mȯÈÓ©® ¯Ë²ãËÓ º
Óº°ÒËãÓº
τ
}ºº¯©®ºãÎËÓ©Ó˺¯ÒÈËãÓ©ä¹¯Òãºä
τ
|°È
°ãËËº˺Ò°}¯ÒäÒÓÈÓÓ˹ºãºÎÒËãËÓº˰
()

CAB
a
aa
2
40
−≤
ÒãÒº}ºÓÈËãÓº

A B AB BA
aa
a
≥−
1
4
2

˺¯ËäÈº}ÈÏÈÓÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



 ‘˺¯ËäÈ                iã«m‚²ª¯ä҈ºm©²º¹Ë¯Èˆº¯ºm A Ò B ÏÈÈÓÓ©²m‚Ó҈ȯӺ乯º
                 °ˆ¯ÈÓ°ˆmËÒäËˈä˰ˆº°ººˆÓºËÓÒË
  vººˆÓºËÓÒË                                                                                                        2
                                                                                             1
 Ó˺¹¯ËËãËÓ                                                                 Aˆ Bˆ ≥           Aˆ Bˆ − Bˆ Aˆ a 
 Óº°ˆË®                                                                        a   a        4

  iº}ÈÏȈËã°ˆmº
   
   
           °cȰ°äºˆ¯Òä mºº­Ë ºmº¯« Ó˪¯ä҈ºm º¹Ë¯Èˆº¯ Q = ( A − A ) + τ ( B − B ) i 
                                                                                                                                                    a                        a
                   Ë τ  ÓË}ºˆº¯©® m˝˰ˆmËÓÓ©® ¹È¯Èäˈ¯  ã« }ºˆº¯ºº ª¯ä҈ºmº
                  °º¹¯«ÎËÓÓ©ä­‚ˈº¹Ë¯Èˆº¯mÒÈ
                                                            Qˆ + = ( Aˆ − Aˆ a ) − τ ( Bˆ − Bˆ a )i 
                  Ò­º ª¯ä҈ºm©äÒ «mã« ˆ°« °ãË‚ ÒË ˈ©¯Ë º¹Ë¯Èˆº¯È A , A , B , B 
                                                                                                                                                            a                    a

                  ~ÈäˈÒä           ˆÈ}ÎË              ˆº             º¹Ë¯Èˆº¯               Q + Q                          ª¯ä҈ºm                 Ò           ˆº
                      a Q + Q a = Q a Q a ≥ 0 , ∀Q  väº}ÈÏȈËã °ˆmºˆËº¯Ë䩹° 
                  
          °{©¯ÈÏÒ亹˯Ȉº¯ Q + Q ˯ËϺ¹Ë¯Èˆº¯© A , A , B , B ¹ºã‚Òä
                                                                                                              a                    a
          
                                   Q + Q = ( ( A − A ) − τ ( B − B )i )( ( A − A ) + τ ( B − B )i ) =
                                                               a                         a                        a                            a

                                          = ( A − A ) 2 + τ 2 ( B − B ) 2 +
                                                           a                                 a
                                                                                                                                                        
                                          + τ ( ( A − A )( B − B ) − ( B − B )( A − A ) )i =
                                                                   a                a                     a                    a

                                          = ( A − A ) 2 + τ 2 ( B − B ) 2 + τ ( AB
                                                                                      − BA
                                                                                            )i .
                                                           a                                 a
      
          °|­ºÏÓÈÒä C = − ( AB
                                     − BA
                                           )i ¹¯ÒË予äˈÒ䈺ÒϹ¯Ë©‚Ëº¯ÈmËÓ°ˆmÈ
                  °ãË‚ˈ ª¯ä҈ºmº°ˆ  º¹Ë¯Èˆº¯È C  }È} ãÒÓˮӺ® }ºä­ÒÓÈÒÒ ª¯ä҈ºm©²
                  º¹Ë¯Èˆº¯ºmº°҈ÈËäˆË¹Ë¯ °¯ËÓËËÏÓÈËÓÒ˪¯ä҈ºmȺ¹Ë¯Èˆº¯È Q + Q 
                                            Q + Q        =           A + τ 2 B + a τ ( AB
                                                                                             − BA
                                                                                                   )ia                                   =
                                                      a                    a            a
                                                                                                                                               
                                                           = τ 2 B − τ C + A
                                                                                a            a        a
                  
                  ºã‚ËÓÓºË ÏÓÈËÓÒË Q + Q  ˰ˆ  m˝˰ˆmËÓÓ©® }mȯȈө® ˆ¯Ë²ãËÓ ºˆ
                                                                       a
                  Óº°ÒˆËã Óº τ}ºˆº¯©®ºãÎËÓ­©ˆ Ó˺ˆ¯ÒȈËã ө乯Òã ­ºä τ|ˆ° È
                  °ãË‚ˈˆºËºÒ°}¯ÒäÒÓÈӈÓ˹ºãºÎ҈ËãËÓˆº˰ˆ 
                  
                                                                                                                                                                    2
                          ( C a ) 2 −   4 A B ≤ 0 ÒãÒº}ºÓȈËã Óº A B                                                 ≥
                                                                                                                                       1         − BA
                                                                                                                                               AB    
                                                                                                                                                                a
                                                                                                                                                                        
                                               a      a                                                           a       a            4
     
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ