Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 277 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÓÒȯӺË¹¯º°¯ÈÓ°mº

 
 
.
() ()()
()()
()()
A aAA a aAA AAa
AA aAAa
AAaAAa
a
aaa
aa
aa
=− =− =
=− =
=−
+
2
0
v¯º®°º¯ºÓ©Ò°²º«ÒÏº¹¯ËËãËÓÒ«¹ºãÒä


() ()
(( ) ( ) )
AAA aAAa
aA AA A a
a
a
a
a
aa
=− = =
=−+ =
22
22
2

=− + =
=− +=−
aAa AaAa A aa
AAAAAA
aa
aaaa aa
() ( )
() ( ) () ( )


.
22
2222
2
2
˺¯ËäÈº}ÈÏÈÓÈ

˺¯ËäÈ

iã« ª¯äÒºmÈ º¹Ë¯Èº¯È
A
 Ë®°m˺ m ÓÒȯӺä ¹¯º°¯ÈÓ°mË
Ò°¹Ë¯°Ò« mÏ«È« ¹º ˺ Óº¯äÒ¯ºmÈÓÓºä °º°mËÓÓºä mË}º¯ ¯Èm
Ó«Ë°«Óã
iº}ÈÏÈËã°mº
°
Aa a
=
λ
ºÈ
(
)
(
)
(
)

()
.
()
AA A aAaaAa
aAAa aAa aA a a a a Aa a a
a a aa aa aa
a
aa
=−= =
=−===
=− = ==
22
2
2
22
2
2
22
2
22
2
0
λλ λ λ
λλλλλλλ
¹º°}ºã}
aa= 1

˺¯ËäÈº}ÈÏÈÓÈ

vººÓºËÓÒËÓ˺¹¯ËËãËÓÓº°Ë®
iã«ª¯äÒºm©²º¹Ë¯Èº¯ºmË®°mÒ²mÓÒȯӺä¹¯º°¯ÈÓ°mË°¹¯ÈmË
ãÒmÈ
cÈÏËã
Ó҈ȯӺ˹¯º°ˆ¯ÈÓ°ˆmº



                                        A = a        ( A −     A       )2a      = a       ( A −   A       )( A −           A       )a   =
                                           a                          a                                    a                          a

                                                                          =    ( A −   A
                                                                                             a
                                                                                                 ) + a ( A −           A
                                                                                                                             a
                                                                                                                                 )a       =        

                                                                          =    ( A −   A
                                                                                             a
                                                                                                 )a ( A −         A
                                                                                                                        a
                                                                                                                             )a       ≥0 .
           
           v¯‚º®°ˆº¯ºÓ©Ò°²º«ÒϺ¹¯ËËãËÓÒ«¹ºã‚Òä
           
                                               A =   ( A −     A       )2       = a   ( A −       A       )2a               =
                                                a                     a        a                           a
                                                                                                                                      
                                                    = a     ( ( A ) 2 − 2 A A a + ( A a ) 2 ) a                               =

                                                    = a    ( A ) 2 a − 2 A a a A a + ( A a ) 2 a a =
                                                                                                                                                      
                                                    = ( A ) 2 − 2 A A + ( A ) 2 = ( A ) 2 − ( A ) 2                                              .
                                                               a        a   a       a             a    a
           
     ‘˺¯ËäȺ}ÈÏÈÓÈ
               
               
 ‘˺¯ËäÈ              iã« ª¯ä҈ºmÈ º¹Ë¯Èˆº¯È A  Ë®°ˆm‚ Ëº m ‚Ó҈ȯӺä ¹¯º°ˆ¯ÈÓ°ˆmË
               Ò°¹Ë¯°Ò« mÏ«ˆÈ« ¹º ˺ Óº¯äÒ¯ºmÈÓÓºä‚ °º­°ˆmËÓÓºä‚ mË}ˆº¯‚ ¯Èm
                       ӫˈ°«ӂã 
        
  iº}ÈÏȈËã°ˆmº
      
                   = λa ˆºÈ
           ‚°ˆ  Aa
           
               A = ( A ) 2 − ( A                  a ( A ) 2 a − a A a
                                                                                             2
                              a           a
                                            )2 =                                                 =
                   a

                          = a A ( A a ) − a A a                    = a A ( λ a ) − a λ a                            = a λA a − a λ a
                                                                 2                                                 2                                           2
                                                                                                                                                                   = 
                                                             2                                                 2
                          = λ a λ a − λ2 a a                     = λ2 a a − λ2 a a                                 = λ2 − λ2 = 0 .
           
        ¹º°}ºã }‚ a a = 1 
        
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
          
vººˆÓºËÓÒËÓ˺¹¯ËËãËÓÓº°ˆË®
               
               
               
               i㫪¯ä҈ºm©²º¹Ë¯Èˆº¯ºmË®°ˆm‚ Ò²m‚Ó҈ȯӺ乯º°ˆ¯ÈÓ°ˆm˰¹¯ÈmË
ãÒmÈ