Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 275 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÓÒȯӺË¹¯º°¯ÈÓ°mº
pm}ãÒºmº¹¯º°¯ÈÓ°mº
ÓÒȯӺË¹¯º°¯ÈÓ°mº
¯ÈmÒãº m©Óº°È }ºÓ°ÈÓ© ÒÏ ¹Ë¯mºº
°ºäÓºÎÒËã«m°}È㫯Ӻä¹¯ºÒÏmËËÓÒÒ
(,) (,)
λλ
ab ab=
¯ÈmÒãº m©Óº°È }ºÓ°ÈÓ© ÒÏ ¹Ë¯mºº
°ºäÓºÎÒËã«m°}È㫯Ӻä¹¯ºÒÏmËËÓÒÒ
λλ
ab ab=
|¯ººÓÈãÓ©®º¹Ë¯Èº¯
A

(
,
)(,); ,Aa Ab a b a b E
=∀
ÓÒȯө®º¹Ë¯Èº¯
A


Aa Ab a b=

∀∈ab U
,
|¯ººÓÈãÓÈ«äÈ¯ÒÈ

AA E
T
=
ÓÒȯÓÈ«äÈ¯ÒÈ

AA E
T
=
{ º¯ºÓº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë m
E
n

º¯ººÓÈãÓ©® º¹Ë¯Èº¯ ÒäËË
º¯ººÓÈãÓäÈ¯Ò
{ º¯ºÓº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë m
U
n

ÓÒȯө® º¹Ë¯Èº¯ ÒäËË ÓÒȯÓ
äÈ¯Ò
vº¹¯«ÎËÓÓ©®º¹Ë¯Èº¯
A
+

(
,) (,
); ,
Aa b a A b a b E
=∀
+
w¯äÒºmº°º¹¯«ÎËÓÓ©®º¹Ë¯Èº¯
A
+


Aa b a A b
=
+

∀∈
ab U,

{
E
n
°º¹¯«ÎËÓÓ©®º¹Ë¯Èº¯ÒäËËäÈ
¯Ò

T
AA
g
g
+
=
ΓΓ
1
{
U
n
ª¯äÒºmº °º¹¯«ÎËÓÓ©® º¹Ë¯Èº¯
ÒäËËäÈ¯Ò

T
AA
g
g
+
=
ΓΓ
1
vÈ亰º¹¯«ÎËÓÓ©®º¹Ë¯Èº¯
(
,) (,
); ,Aa b a Ab a b E
=∀
w¯äÒºmº °È亰º¹¯«ÎËÓÓ©® ª¯äÒºm
º¹Ë¯Èº¯

Aa b a Ab
=

∀∈
ab U
,
vÒääË¯Ò˰}È«äÈ¯ÒÈ

AA
T
=
w¯äÒºmÈäÈ¯ÒÈ

AA
T
=
{º¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ëm
E
n
°Èäº
°º¹¯«ÎËÓÓ©®º¹Ë¯Èº¯ÒäËË°ÒääË¯Ò
˰}äÈ¯Ò
{ º¯ºÓº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë m
U
n
ª¯
äÒºmº¹Ë¯Èº¯ÒäËËª¯äÒºmäÈ¯Ò
jÏ °º°mËÓÓ©² mË}º¯ºm °Èäº
°º¹¯«ÎËÓÓºº º¹Ë¯Èº¯È m
E
n
äºÎÓº
º¯ÈϺmÈº¯ºÓº¯äÒ¯ºmÈÓÓ©®ÈÏÒ°
jÏ°º°mËÓÓ©²mË}º¯ºmª¯äÒºmÈº¹Ë
¯Èº¯È m
U
n
äºÎÓºº¯ÈϺmÈ
º¯ºÓº¯äÒ¯ºmÈÓÓ©®ÈÏÒ°
Òjisq|j
cÈÏËã
Ó҈ȯӺ˹¯º°ˆ¯ÈÓ°ˆmº



                                                                             
                  pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº                                                     Ó҈ȯӺ˹¯º°ˆ¯ÈÓ°ˆmº
    
                                                                             
    ¯ÈmÒ㺠m©Óº°È }ºÓ°ˆÈӈ© ÒÏ ¹Ë¯mºº                                  ¯ÈmÒ㺠m©Óº°È }ºÓ°ˆÈӈ© ÒÏ ¹Ë¯mºº
    °ºäÓºÎ҈Ëã«m°}È㫯Ӻ乯ºÒÏmËËÓÒÒ                                    °ºäÓºÎ҈Ëã«m°}È㫯Ӻ乯ºÒÏmËËÓÒÒ
                                                                             
                 ( λa , b ) = λ ( a , b )                                                                 λa b = λ a b 
    
    |¯ˆººÓÈã Ó©®º¹Ë¯Èˆº¯ A                                              Ó҈ȯө®º¹Ë¯Èˆº¯ A 
                                                                             
                   , Ab
                ( Aa   ) = (a , b) ; ∀a , b ∈ E                                              Ab
                                                                                              Aa  = a b  ∀a, b ∈U 
                                                                             
    |¯ˆººÓÈã ÓÈ«äȈ¯ÒÈ                                                   Ó҈ȯÓÈ«äȈ¯ÒÈ
                                                              T                                                                 T
                                         A             A = E                                       A             A = E 
    
    { º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë m E n  { º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë m U n 
    º¯ˆººÓÈã Ó©®     º¹Ë¯Èˆº¯   ÒäËˈ ‚Ó҈ȯө® º¹Ë¯Èˆº¯ ÒäËˈ ‚Ó҈ȯӂ 
    º¯ˆººÓÈã ӂ äȈ¯Ò‚                  äȈ¯Ò‚
    
    vº¹¯«ÎËÓÓ©®º¹Ë¯Èˆº¯ A +                                              w¯ä҈ºmº°º¹¯«ÎËÓÓ©®º¹Ë¯Èˆº¯ A + 
                                                                             
                 , b) = (a , A + b) ; ∀a , b ∈ E 
              ( Aa                                                                           b = a A + b  ∀a, b ∈U 
                                                                                            Aa
    
    { E n °º¹¯«ÎËÓÓ©®º¹Ë¯Èˆº¯ÒäËˈäȈ { U n  ª¯ä҈ºmº °º¹¯«ÎËÓÓ©® º¹Ë¯Èˆº¯
    ¯Ò‚                                   ÒäËˈäȈ¯Ò‚
                                                −1
                       A +                          A
                                                          T                                                           −1        T
                              g
                                      = Γ
                                                          g
                                                              Γ                                A +   g
                                                                                                           = Γ             A   g
                                                                                                                                    Γ 
    
    vÈ亰º¹¯«ÎËÓÓ©®º¹Ë¯Èˆº¯                                                w¯ä҈ºmº °È亰º¹¯«ÎËÓÓ©®                               ª¯ä҈ºm 
                                                                             º¹Ë¯Èˆº¯
                  , b) = (a , Ab
               ( Aa             ) ; ∀a , b ∈ E                                               b = a Ab
                                                                                              Aa        ∀a, b ∈U 
    
    vÒääˈ¯Ò˰}È«äȈ¯ÒÈ                                                  w¯ä҈ºmÈäȈ¯ÒÈ
                                                                  T                                                                   T
                                                  A          = A                                              A         = A 
    
    {º¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°Ëm E n °Èäº { º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë m U n  ª¯
    °º¹¯«ÎËÓÓ©®º¹Ë¯Èˆº¯ÒäËˈ°Òääˈ¯Ò ä҈ºmº¹Ë¯Èˆº¯ÒäËˈª¯ä҈ºm‚äȈ¯Ò‚
    ˰}‚ äȈ¯Ò‚
    
    jÏ   °º­°ˆmËÓÓ©²  mË}ˆº¯ºm      °Èäº jϰº­°ˆmËÓÓ©²mË}ˆº¯ºmª¯ä҈ºmȺ¹Ë
    °º¹¯«ÎËÓÓºº º¹Ë¯Èˆº¯È m E n  äºÎÓº ¯Èˆº¯È m U n  äºÎÓº                                                                 º­¯ÈϺmȈ 
    º­¯ÈϺmȈ º¯ˆºÓº¯äÒ¯ºmÈÓÓ©®­ÈÏÒ°       º¯ˆºÓº¯äÒ¯ºmÈÓÓ©®­ÈÏÒ°
          
          
                                      Òjisq|j