Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 274 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
jÏ}ºääÒ¯Ë亰Òº¹Ë¯Èº¯ºm
A
Ò
B
¹º˺¯ËäËÒäËËäº
Bf f
=
µ

È ÒÏ }ºääÒ¯Ë亰Ò
A
Ò
C
°ãËË º
Cf f
=
κ
 sº ºÈm°Òã
ffA
λ
=
ˆ

°¹¯ÈmËãÒm©¯ÈmËÓ°mÈ


ABf BAf f
ACf CAf f
==
==
λµ
λκ



CBAf f
BCAf f
=
=
λµκ
λµκ
Ò

() ()

() ()
CB f f
BC f f
λµκλ
λµκλ
=
=

ÒÈ« ªÒ ¯ÈmËÓ°mÈ ¹ºãËÓÓº ¹ºãÈËä º
Λ= fofBCCB
;))(
ˆ
ˆˆ
ˆ
(
λ
 º
˰

BC CB O−=
Òº¹Ë¯Èº¯©
B
Ò
C
}ºääÒ¯sº¹º°ãËÓËËm˯ÎËÓÒË
¹¯ºÒmº¯ËÒ°ãºmÒ˺¯Ëä©Ò°ã˺mÈËãÓºÓ˺²ºÒäºº¹°Ò°Ë
°mºmÈÓÒËºãËËËäºÓººãÒÓˮӺÓËÏÈmÒ°Ò人ªãËäËÓÈm
Λ

˺¯ËäÈº}ÈÏÈÓÈ

{ ÈãÒË  ¹¯ÒmËËÓ© ÓË}ºº¯©Ë ¹ºÓ«Ò« Ò °mº®°mÈ Ëm}ãÒºmÈ Ò
ÓÒȯӺº ¹¯º°¯ÈÓ°m È}Òä º¯ÈϺä º© ºãËÒ Ò² °¯ÈmÓÒËãÓºË
°º¹º°ÈmãËÓÒË
 w¯äÒºm© ÁÓ}ÒºÓÈã© v¯ËÓËË ÏÓÈËÓÒË Ò Ò°¹Ë¯°Ò«
ª¯äÒºmÈº¹Ë¯Èº¯È
zÈ}ÒmãºäãÒÓˮӺä¹¯º°¯ÈÓ°mËmÓÒȯӺä¹¯º°¯ÈÓ°mËäºÎÓºmmË
°Ò ÒãÒÓˮөË Ò }mȯÈÒÓ©Ë ÁÓ}ÒºÓÈã© sȹ¯Òä˯ m ÓÒȯӺä ¹¯º°¯ÈÓ°mË
Ó˹¯Ë¯©mÓ©²}ºä¹ãË}°ÓºÏÓÈÓ©²ÓÈ
[,]
αβ
ÁÓ}Ò®
ψ
τ
()
ÒãÒÓˮөä¹º
ϕτ
()
Ò
ψ
τ
()
ÁÓ}ÒºÓÈãºä«mã«Ë°«m©¯ÈÎËÓÒË
BKdd((), ()) () (,) ()
ϕτ
ψ
τϕσστ
ψ
τστ
=
∫∫

|¹¯ËËãËÓÒË

zmȯÈÒÓ©® ÁÓ}ÒºÓÈã È
Φ
()
xxAx
=
 Ë
xU
 È ãÒÓˮө®
º¹Ë¯Èº¯
A
ª¯äÒºmÓÈÏ©mÈË°«ëéuqzvku{ytr|qvtjsvuÒãÒëé
uqzvkvp{véuvpmÓÒȯӺä¹¯º°¯ÈÓ°mË
U

|¹¯ËËãËÓÒË

Ò°ãº

AaAa
a
=
ÓÈÏ©mÈË°«xénltquotj·ntqnuëéuqzvkjvwnéjzvéj
A
wv
a
tvéuqévkjttvuyësnuntzyqoytqzjétvmvwévxzéjtxzkj
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          jÏ}ºä䂈ү‚Ë亰ˆÒº¹Ë¯Èˆº¯ºm A Ò B  ¹ºˆËº¯ËäË ÒäËË䈺 Bf
                                                                                      = µf 
                                                               = κf  sº ˆºÈ m °Òã‚ Aˆ f = λf 
          È ÒÏ }ºä䂈ү‚Ë亰ˆÒ A  Ò C  °ãË‚ˈ ˆº Cf
          °¹¯ÈmËãÒm©¯ÈmËÓ°ˆmÈ
          
                                = BAf
                              ABf     = λµf             = λµκf
                                                       CBAf                   (λf ) = µκ (λf )
                                                                            CB
                                                             Ò                      
                                = CAf
                              ACf      = λκf            = λµκf
                                                       BCAf                   (λf ) = µκ (λf )
                                                                            BC
          
          {©҈ȫ ªˆÒ ¯ÈmËÓ°ˆmÈ ¹ºãËÓÓº ¹ºã‚ÈËä ˆº ( Bˆ Cˆ − Cˆ Bˆ )(λf ) = o ; ∀f ∈ Λ∗  ˆº
                        = O Òº¹Ë¯Èˆº¯© B Ò C }ºä䂈ү‚ ˆsº¹º°ãËÓËË‚ˆm˯ÎËÓÒË
                  − CB
          ˰ˆ  BC
          ¹¯ºˆÒmº¯Ë҈‚°ãºmÒ ˆËº¯Ëä©Ò°ã˺mȈËã ÓºÓ˺­²ºÒ人¹‚°ˆÒˆ °‚Ë
      °ˆmºmÈÓÒË­ºãËËËäºÓººãÒÓˮӺÓËÏÈmÒ°Ò人ªãËäËӈÈm Λ∗ 
      
      
   ‘˺¯ËäȺ}ÈÏÈÓÈ
        
        
        { ˆÈ­ãÒË  ¹¯ÒmËËÓ© ÓË}ºˆº¯©Ë ¹ºÓ«ˆÒ« Ò °mº®°ˆmÈ Ëm}ãÒºmÈ Ò
‚Ó҈ȯӺº ¹¯º°ˆ¯ÈÓ°ˆm ˆÈ}Òä º­¯ÈϺä ˆº­© º­ãË҈  Ò² °¯ÈmÓ҈Ëã ÓºË
°º¹º°ˆÈmãËÓÒË
        
        
        
        
           w¯ä҈ºm© Á‚Ó}ÒºÓÈã© v¯ËÓËË ÏÓÈËÓÒË Ò Ò°¹Ë¯°Ò«
                  ª¯ä҈ºmȺ¹Ë¯Èˆº¯È
        
        
        
        zÈ}Òmã ­ºäãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmËm‚Ó҈ȯӺ乯º°ˆ¯ÈÓ°ˆmËäºÎÓºmmË
°ˆÒ ­ÒãÒÓˮөË Ò }mȯȈÒÓ©Ë Á‚Ó}ÒºÓÈã© sȹ¯Òä˯ m ‚Ó҈ȯӺä ¹¯º°ˆ¯ÈÓ°ˆmË
Ó˹¯Ë¯©mÓ©²}ºä¹ãË}°ÓºÏÓÈÓ©²ÓÈ [α , β ] Á‚Ó}Ò® ψ (τ ) ­ÒãÒÓˮө乺 ϕ (τ ) Ò ψ (τ ) 
Á‚Ó}ÒºÓÈãºä«mã«Ëˆ°«m©¯ÈÎËÓÒË
       
                                         B (ϕ (τ ),ψ (τ )) = ∫∫ ϕ (σ ) K (σ ,τ )ψ (τ ) dσ dτ 
                                                                 Ω
              
              
 |¹¯ËËãËÓÒË                                                          Ë x ∈U  È ãÒÓˮө®
                         zmȯȈÒÓ©® Á‚Ó}ÒºÓÈã mÒÈ Φ ( x ) = x Ax
 
                         º¹Ë¯Èˆº¯ A ª¯ä҈ºmÓÈÏ©mÈˈ°«ëéuqzvk€u{ytr|qvtjsvu ÒãÒëé
                         uqzvkvp{véuvp m‚Ó҈ȯӺ乯º°ˆ¯ÈÓ°ˆmË U 
                                
              
              
 |¹¯ËËãËÓÒË              Ұ㺠A a = a Aa
                                           ÓÈÏ©mÈˈ°«xénltquotj·ntqnuëéuqzvkjvwnéjzvéj
 
                          A wvatvéuqévkjttvuyësnuntzyqoytqzjétvmvwévxzéjtxzkj