Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 276 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
~ÈäËÈÓÒ«
°p°ãÒ
a
Óº¯äÒ¯ºmÈÓÓ©®º˰°
aaa==1
°º°mËÓÓ©®mË}
º¯ª¯äÒºmÈº¹Ë¯Èº¯È
A
°°ººmË°mÒä°º°mËÓÓ©äÏÓÈËÓÒËä
λ
º
A
a
=
λ
¹º°}ºã}mªºä°ãÈË

AaAaaa aa
a
====
λλ λ

°
v¯ËÓËË ÏÓÈËÓÒË ª¯äÒºmÈ º¹Ë¯Èº¯È ÏÈÈÓÓºº m ÓÒȯӺä ¹¯º
°¯ÈÓ°mËmË˰mËÓÓº
°

AA
+
=
ºÈ

Aa a a A a a Aa Aa a
===
+
Óº˰ãÒÓË}ºº¯ºË
Ò°ãº¯ÈmÓº°mºËä}ºä¹ãË}°Óºä°º¹¯«ÎËÓÒººÓºmË˰mËÓÓº
°
p°ãÒ¹¯ÒÓ«ºº¹Ë¯Èº¯äÓºÎËÓÒ«ÓÈ}ºÓ°ÈÓ
κ
˰
E
ˆ
ˆ
κκ
=
Ë
E
ËÒÓÒÓ©®º¹Ë¯Èº¯ºÒäËËä˰º°ººÓºËÓÒË

AA
a
a
−=0

iË®°mÒËãÓº

(

)

AA aAAa aAa aAa A Aaa
a
a
aaaa
−= = = =0

|¹¯ËËãËÓÒË

Ò°ãº
(

)AAA
a
a
a
=−
2
ÓÈÏ©mÈË°«lqxwnéxqnpëéuqzvkjvwnéjzvéj
$
¹ºÓº¯äÒ¯ºmÈÓÓºäªãËäËÓÓÒȯӺº¹¯º°¯ÈÓ°mÈ
a

|äËÒä°ãËÒË°mº®°mÈÒ°¹Ë¯°ÒÒ
˺¯ËäÈ

iÒ°¹Ë¯°Ò«
A
a
ª¯äÒºmÈ º¹Ë¯Èº¯È
A
 Ë®°m˺ m ÓÒȯӺä
¹¯º°¯ÈÓ°mË˰mË˰mËÓÓºËÓ˺¯ÒÈËãÓºËÒ°ãºã«}ºº¯º
º°¹¯ÈmËãÒmº¯ÈmËÓ°mº
(
)(
)
AA A
a
a
a
=−
22

iº}ÈÏÈËã°mº
º}ÈÎËämÓÈÈãËºÒ°ãº
A
a
mË˰mËÓÓºËÒÓ˺¯ÒÈËãÓºË
|¹Ë¯Èº¯

AA
a
ºËmÒÓºª¯äÒºm¹º°}ºã}ª¯äÒºm©äÒ«mã«°«º¹Ë¯È
º¯©
A
¹º°ãºmÒ˺¯Ëä©Ò
A
a
}È}º¹Ë¯Èº¯äÓºÎËÓÒ«ÓÈ}ºÓ°ÈÓ
ºÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



~ÈäËÈÓÒ«°p°ãÒ aÓº¯äÒ¯ºmÈÓÓ©® ˆº˰ˆ ° a =                                            a a = 1 °º­°ˆmËÓÓ©®mË}
                         ˆº¯ª¯ä҈ºmȺ¹Ë¯Èˆº¯È A °°ººˆmˈ°ˆm‚ Òä°º­°ˆmËÓÓ©äÏÓÈËÓÒËä
                         λˆº A a = λ ¹º°}ºã }‚mªˆºä°ã‚ÈË
                                                  A a = a Aa
                                                            = a λa = λ a a = λ 
                         
                         

                   °v¯ËÓËË ÏÓÈËÓÒË ª¯ä҈ºmÈ º¹Ë¯Èˆº¯È ÏÈÈÓÓºº m ‚Ó҈ȯӺä ¹¯º
                        °ˆ¯ÈÓ°ˆmËm˝˰ˆmËÓÓº
                         ‚°ˆ  A + = A ˆºÈ Aa
                                                    a = a A + a = a Aa
                                                                       = Aa
                                                                           a Óº˰ãÒÓË}ºˆº¯ºË
                         Ұ㺯ÈmÓº°mºËä‚}ºä¹ãË}°Óºä‚°º¹¯«ÎËÓÒ ˆººÓºm˝˰ˆmËÓÓº
                         
                         


                   °p°ãÒ¹¯ÒÓ«ˆ ˆºº¹Ë¯Èˆº¯‚äÓºÎËÓÒ«ÓÈ}ºÓ°ˆÈӈ‚ κ ˰ˆ  κˆ = κ Ê Ë
                             E ËÒÓÒÓ©®º¹Ë¯Èˆº¯ˆºÒäËˈä˰ˆº°ººˆÓº ËÓÒË A − A a                                            = 0 
                                                                                                                                    a
                         
                         iË®°ˆm҈Ëã Óº
                         
                                    A − A a            = a ( A − A a )a = a Aa
                                                                                 − a A a = A − A a a = 0 
                                                                                        a      a    a
                                                 a
                         
                         
                         
 |¹¯ËËãËÓÒË                                                                                      
                             Ұ㺠A = ( A − A a ) 2 ÓÈÏ©mÈˈ°«lqxwnéxqnpëéuqzvkjvwnéjzvéj $
                                   a                    a

             ¹ºÓº¯äÒ¯ºmÈÓӺ䂪ãËäËӈ‚‚Ó҈ȯӺº¹¯º°ˆ¯ÈÓ°ˆmÈa
      
      
|ˆäˈÒä°ãË‚ Ò˰mº®°ˆmÈÒ°¹Ë¯°ÒÒ
      
 ‘˺¯ËäÈ               iÒ°¹Ë¯°Ò« A  ª¯ä҈ºmÈ º¹Ë¯Èˆº¯È A  Ë®°ˆm‚ Ëº m ‚Ó҈ȯӺä
                                             a
                        ¹¯º°ˆ¯ÈÓ°ˆmË˰ˆ m˝˰ˆmËÓÓºËÓ˺ˆ¯ÒȈËã ÓºËÒ°ãºã«}ºˆº¯º
                        º°¹¯ÈmËãÒmº¯ÈmËÓ°ˆmº A = ( A ) 2                             − ( A a ) 2 
                                                                           a            a
              
  iº}ÈÏȈËã°ˆmº
      
      
          º}ÈÎËämÓÈÈãˈºÒ°ãº A m˝˰ˆmËÓÓºËÒÓ˺ˆ¯ÒȈËã ÓºË
                                                                a
          
          |¹Ë¯Èˆº¯ A − A                    ºËmÒÓºª¯ä҈ºm¹º°}ºã }‚ª¯ä҈ºm©äÒ«mã« ˆ°«º¹Ë¯È
                                       a

          ˆº¯© A  ¹º‚°ãºmÒ ˆËº¯Ëä© Ò A                                  }È}º¹Ë¯Èˆº¯‚äÓºÎËÓÒ«ÓÈ}ºÓ°ˆÈӈ‚ 
                                                                       a
          ‘ºÈ