Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 291 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË¯©
ã«ÈÓÈãÒÏÈ}ºº¯ººËã˰ºº¯ÈÏÓº¹Ë¯Ë®Ò}Óºmºäº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°
¹ºÁº¯äãÈä
2222
3424
3
24
2
34
3
3424
3
34
2
24
211
;;
αα
ξ
α
ξ
α
ξ
αα
ξ
α
ξ
α
ξ
ξ
ξ
+
=
+
+
=
=
ººËmÒÓº«mã«Ë°«¹ºmº¯ººäm¹ãº°}º°Ò
32
ξ
ξ
O
{ÒºË¹ºãÈËä¯ÈmÓËÓÒË
0)(2
44
2
342411
=
+
+
+
α
ξ
αα
ξ
λ
222
Ò°ººmË°mÒËËämȯÒÈÓ©
˰ãÒ
′′
α
24
0
ÒãÒ
′′
α
34
0
º¹º°ãË¹Ë¯ËÓº°ÈÓÈÈãÈ}ºº¯ÒÓÈÒäËËä

°
 Íjéjivsq·nxrqp|qsqtlé
˰ãÒ
′′
=
′′
=
αα
24 34
0
º¹ºãÈËä

°
 Íjéjutqu}wjéjssnst}wsvxrvxznp
¹¯Ò
sgn( ) sgn( )
λα
144
=
′′


°
 Íjéjwjéjssnst}wsvxrvxznp¹¯Ò
sgn( ) sgn( )
λα
144
=−
′′

˰ãÒ
0
443424
=
=
=
ααα

°
 Íjéjxvkwjljíq}wsvxrvxznp
~ÈäËÈÓÒ«
° iã«}ãȰ°ÒÁÒ}ÈÒÒ}ºÓ}¯ËÓº®¹ºm˯²Óº°Òmº¯ºº¹º¯«}ÈÓË
º²ºÒäº °ËãÈ ¹¯Ëº¯ÈϺmÈÓÒË }mȯÈÓº® ȰÒ ¯ÈmÓËÓÒ« }
ÒȺÓÈãÓºämÒÒm©¹ºãÓÒ¹Ë¯ËÓº°©ÓÈÈãÈ}ºº¯ÒÓÈ
° v²ËäÈÒ°°ã˺mÈÓÒ«}¯Òm©²mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°ÒÈÓÈãº
ÒÓÈ°ãÈ¯È°°äº¯ËÓÓºäm
E
3

cÈÏËã
¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË­¯©



        ã«ÈÓÈãÒÏÈ}ºˆº¯ººËã˰ºº­¯ÈÏÓº¹Ë¯Ë®ˆÒ}Óºmºä‚º¯ˆºÓº¯äÒ¯ºmÈÓӺ䂭ÈÏÒ°‚
        ¹ºÁº¯ä‚ãÈä
        
        
                                                         ′′ ξ 2′′ + α 34
                                                       α 24           ′′ ξ 3′′                      ′′ ξ 2′′ − α 24
                                                                                                  α 34           ′′ ξ 3′′
                             ξ1′′′= ξ1′′ ; ξ 2′′′ =                                  ; ξ 3′′′ =                             
                                                               ′′ 2
                                                             α 24         ′′ 2
                                                                      + α 34                             ′′ 2
                                                                                                       α 24         ′′ 2
                                                                                                                + α 34
                                                                             

         ˆººËmÒÓº«mã«Ëˆ°«¹ºmº¯ºˆºäm¹ãº°}º°ˆÒ Oξ 2ξ 3 {҈ºË¹ºã‚ÈË䂯ÈmÓËÓÒË
        
                                                    λ1ξ1′′′ 2 + 2( α 24
                                                                     ′′ 2 + α 34
                                                                              ′′ 2 )ξ 2′′′ + α 44
                                                                                               ′′ = 0 
                                                                                 
                                                                                 
        Ò°ººˆmˈ°ˆm‚ ÒËËä‚mȯÒÈӈ©
        
        
        ˰ãÒ α 24
                ′′ ≠ 0 ÒãÒ α 34
                               ′′ ≠ 0 ˆº¹º°ã˹˯ËÓº°ÈÓÈÈãÈ}ºº¯ÒÓȈÒäËËä
        
               ° Íjéjivsq·nxrqp|qsqtlé
    
    
        ˰ãÒ α 24
                ′′ = α 34
                       ′′ = 0 ˆº¹ºã‚ÈËä
    
                 ° Íjéjutqu€}wjéjssnst€}wsvxrvxznp
                                                                                                 ¹¯Ò sgn( λ 1 ) = sgn(α 44
                                                                                                                                    ′′ ) 
    
          ° Íjéjwjéjssnst€}wsvxrvxznp               ¹¯Ò sgn( λ 1) = − sgn(α 44
                                                                                         ′′ ) 
          
          
           ′′ = α 34
   ˰ãÒ α 24     ′′ = α 44
                         ′′ = 0 
          
          ° Íjéjxvkwjljíq}wsvxrvxznp
          
          
          
          
~ÈäËÈÓÒ«°     iã«}ãȰ°ÒÁÒ}ÈÒÒ}ºÓ}¯ËˆÓº®¹ºm˯²Óº°ˆÒmˆº¯ºº¹º¯«}ÈÓË
                        º­²ºÒäº °ËãȈ  ¹¯Ëº­¯ÈϺmÈÓÒË }mȯȈӺ® ȰˆÒ ‚¯ÈmÓËÓÒ« }
                        ÒȺÓÈã Óºä‚mÒ‚Òm©¹ºãÓ҈ ¹Ë¯ËÓº°©ÓÈÈãÈ}ºº¯ÒÓȈ
          
          
              °     v²ËäÈÒ°°ã˺mÈÓÒ«}¯Òm©²mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒÈÓÈãº
                                   ÒÓȰã‚È ¯È°°äºˆ¯ËÓÓºä‚m E 3