Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 293 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË¯©
iÈãËË ã« }¯È}º°Ò Ëä º¹°}ÈȯäËÓ© ªãËäËÓºm m
E
 º ˰Ëä
ººÏÓÈÈÁÓ}Ò
f(
τ
)
}È}
fE
zmȯÈ¯È°°º«ÓÒ«äËÎªãËäËÓÈäÒ
f
Ò
=
n
k
kk
g
0
ξ
m
E
¯ÈmËÓ
∑∑
==
=
n
k
n
k
kkkk
gfgf
00
2
),(
ξ
ξ
ρ
º˯ËäÏÓÈËÓÒ«}ºªÁÁÒÒËÓºm
],0[, nk
k
=
ξ
È}º©mËãÒÒÓÈ
2
ρ
º}ÈÏÈãȰäÒÓÒäÈãÓº®
{°ÒãÒãÒÓˮӺ°Ò°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«¹ºãÈËä
∑∑∑∑
=====
+==
n
k
n
i
ikik
n
k
kk
n
k
n
k
kkkk
gggfffgfgf
00000
2
),(),(2),(),(
ξ
ξ
ξ
ξ
ξ
ρ

ÈÒÏ°ãºmÒ®¯ÈmËÓ°mÈÓãȰÓ©²¹¯ºÒÏmºÓ©²º
2
ρ
¹ºm°Ëä
],0[, nk
k
=
ξ
º˰
ÒÏ°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®

],0[,),(),(
0
nkgfgg
k
n
i
iki
==
=
ξ

ÓȲº«°«º¹ÒäÈãÓ©ËÏÓÈËÓÒ«}ºªÁÁÒÒËÓºm
ξ
k
kn
=,[,]0
¹¯Ò}ºº¯©²
2
ρ
äÒÓÒ
äÈãÓº ~ÈäËÒä º ÈÓÓÈ« °Ò°ËäÈ ¯ÈmÓËÓÒ® ÒäËË ËÒÓ°mËÓÓºË ¯ËËÓÒË
¹º°}ºã}ËËº°ÓºmÓÈ«äÈ¯ÒÈÓËm©¯ºÎËÓÓÈ«}È}äÈ¯ÒÈ¯ÈäÈÈÏÒ°Ó©²mË}º¯ºm
|äËÒäÁº¯äÈãÓºË°ºm¹ÈËÓÒË¹ºãËÓÓº®Áº¯äã©°m˯ÎËÓÒËä˺¯Ë
ä©  }ºº¯ºË ¹ºÏmºã«Ë ÏÈ}ãÒ º º¹ÒäÈãÓ©Ë ÏÓÈËÓÒ« }ºªÁÁÒÒËÓºm
],0[; nk
k
=
ξ
°}ºº¯ÒÓÈ©ªãËäËÓÈ
f
mÈÏÒ°Ë
{(),[,]}gg k n
kk
==
τ
0
mºä°ãÈË
È
f
¹¯ÒÓÈãËÎÒãÒÓˮӺ®ººãº}Ë
Λ

sÈ®ËääÒÓÒäÈãÓºËÏÓÈËÓÒË
2
ρ
.),(),(),(
),(),(),(),(
00
000
2
)(
∑∑
=
=
=
==
==
=++=
n
k
kk
n
k
kk
n
i
iki
n
k
n
k
kkkk
gffgfff
gggfgfff
ξ
ξ
ξ
ξ
ξ
ρ
jÓÈËºmº¯«¹ºãËÓÓºËm©¯ÈÎËÓÒË¯ÈmÓºÓã¹¯Ò
=
=
n
k
kk
gf
0
ÈªººÏÓÈ
ÈËºÒÏËÎÈ¹º¯ËÓº°Òȹ¹¯º}°ÒäÈÒÒäºÎÓºãÒm°ãÈËÈªãËäËÓ
f
¹¯ÒÓÈãËÎÒ¹º¹¯º°¯ÈÓ°m
Λ

cÈÏËã
¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË­¯©



           iÈãËË ã« }¯Èˆ}º°ˆÒ ­‚Ëä º¹‚°}Ȉ  ȯ‚äËӈ© ªãËäËӈºm m E ˆº ˰ˆ  ­‚Ëä
                                                                                                                                        n
º­ºÏÓÈȈ Á‚Ó}Ò  f(τ)}È} f∈EzmȯȈ¯È°°ˆº«ÓÒ«äË΂ªãËäËӈÈäÒ fÒ                                                           ∑ ξ k g k m
                                                                                                                                       k =0
                                  n                      n
E¯ÈmËÓ ρ 2 = ( f − ∑ξ k g k , f − ∑ ξ k g k ) º­Ë¯ËäÏÓÈËÓÒ«}ºªÁÁÒÒËӈºm ξ k , k = [0, n] 
                                 k =0                k =0
ˆÈ}ˆº­©mËãÒÒÓÈ ρ º}ÈÏÈãȰ äÒÓÒäÈã Óº®
                                        2

       
       
       {°Òã‚­ÒãÒÓˮӺ°ˆÒ°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«¹ºã‚ÈËä
       
                             n                   n                               n                       n   n
           ρ 2 = ( f − ∑ ξ k g k , f − ∑ξ k g k ) = ( f , f ) − 2 ∑ ξ k ( f , g k ) + ∑∑ ξ k ξ i ( g k , g i ) 
                           k =0                k =0                            k =0                    k = 0i = 0
           
ÈÒÏ‚°ãºmÒ®¯ÈmËÓ°ˆmÈӂã ȰˆÓ©²¹¯ºÒÏmºÓ©²ºˆ ρ 2 ¹ºm°Ëä ξ k , k = [0, n] ˆº˰ˆ 
ÒϰҰˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®
      
                                                 n
                  ∑ξ i∗ ( g k , g i ) = ( f , g k ) ,       k = [0, n]   
                                                i =0
           
ÓȲº«ˆ°«º¹ˆÒäÈã Ó©ËÏÓÈËÓÒ«}ºªÁÁÒÒËӈºm ξk∗ , k = [ 0, n] ¹¯Ò}ºˆº¯©² ρ 2 äÒÓÒ
äÈã Óº ~ÈäˈÒä ˆº ÈÓÓÈ« °Ò°ˆËäÈ ‚¯ÈmÓËÓÒ® ÒäËˈ ËÒÓ°ˆmËÓÓºË ¯Ë ËÓÒË
¹º°}ºã }‚Ë˺°ÓºmÓÈ«äȈ¯ÒÈÓËm©¯ºÎËÓÓÈ«}È}äȈ¯ÒÈ€¯ÈäÈ­ÈÏÒ°Ó©²mË}ˆº¯ºm
        
        |ˆäˈÒäÁº¯äÈã Ӻ˰ºm¹ÈËÓÒ˹ºã‚ËÓÓº®Áº¯ä‚ã©°‚ˆm˯ÎËÓÒËäˆËº¯Ë
ä©  }ºˆº¯ºË ¹ºÏmºã«Ëˆ ÏÈ}ã ҈  ˆº º¹ˆÒäÈã Ó©Ë ÏÓÈËÓÒ« }ºªÁÁÒÒËӈºm
ξ k∗ ; k = [0, n] °‚ˆ }ºº¯ÒÓȈ©ªãËäËӈÈ fm­ÈÏÒ°Ë { g k = g k (τ ) , k = [0, n] } mˆºä°ã‚ÈË
}ºÈf¹¯ÒÓÈãËÎ҈ãÒÓˮӺ®º­ºãº}Ë Λ∗ 
        
        
               sÈ®ËääÒÓÒäÈã ÓºËÏÓÈËÓÒË ρ 2 
               
                                                     n                   n                         n
                            ρ 2 = ( f , f ) − ∑ξ k∗ ( f , g k ) + ∑ξ k∗ (−( f , g k ) + ∑ξ i∗ ( g k , g i )) =
                                                k =0                   k =0                       i =0
                                                                                                                            
                                                  n                                   n
                                   = ( f , f ) − ∑ξ k∗ ( f , g k ) = ( f , f − ∑ξ k∗ g k ).
                                                 k =0                                k =0
               
                                                                                                                     n
               jÓÈ˺mº¯«¹ºã‚ËÓÓºËm©¯ÈÎËÓÒ˯ÈmÓºӂã ¹¯Ò f =                                               ∑ ξ k∗ g k ȪˆººÏÓÈ
                                                                                                                    k =0
ÈˈˆºÒÏ­ËÎȈ ¹º¯Ë Óº°ˆÒȹ¹¯º}°ÒäÈÒÒäºÎÓºãÒ                                                        m°ã‚ÈË}ºÈªãËäËӈ f
¹¯ÒÓÈãËÎ҈¹º¹¯º°ˆ¯ÈÓ°ˆm‚ Λ∗