ВУЗ:
Составители:
Рубрика:
cÈÏËã
¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®Èã˯©
iÈãËË ã« }¯È}º°Ò Ëä º¹°}ÈȯäËÓ© ªãËäËÓºm m
E
º ˰Ëä
ººÏÓÈÈÁÓ}Ò
f(
τ
)
}È}
f∈E
zmȯȯȰ°º«ÓÒ«äËΪãËäËÓÈäÒ
f
Ò
∑
=
n
k
kk
g
0
ξ
m
E
¯ÈmËÓ
∑∑
==
−−=
n
k
n
k
kkkk
gfgf
00
2
),(
ξ
ξ
ρ
ºË¯ËäÏÓÈËÓÒ«}ºªÁÁÒÒËÓºm
],0[, nk
k
=
ξ
È}º©mËãÒÒÓÈ
2
ρ
º}ÈÏÈãȰäÒÓÒäÈãÓº®
{°ÒãÒãÒÓˮӺ°Ò°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«¹ºãÈËä
∑∑∑∑∑
=====
+−=−−=
n
k
n
i
ikik
n
k
kk
n
k
n
k
kkkk
gggfffgfgf
00000
2
),(),(2),(),(
ξ
ξ
ξ
ξ
ξ
ρ
ÈÒϰãºmÒ®¯ÈmËÓ°mÈÓãȰө²¹¯ºÒÏmºÓ©²º
2
ρ
¹ºm°Ëä
],0[, nk
k
=
ξ
ºË°
ÒϰҰËä©ãÒÓˮө²¯ÈmÓËÓÒ®
],0[,),(),(
0
nkgfgg
k
n
i
iki
==
∑
=
∗
ξ
ÓȲº«°«º¹ÒäÈãÓ©ËÏÓÈËÓÒ«}ºªÁÁÒÒËÓºm
ξ
k
kn
∗
=,[,]0
¹¯Ò}ºº¯©²
2
ρ
äÒÓÒ
äÈãÓº ~ÈäËÒä º ÈÓÓÈ« °Ò°ËäÈ ¯ÈmÓËÓÒ® ÒäËË ËÒÓ°mËÓÓºË ¯ËËÓÒË
¹º°}ºã}Ë˺°ÓºmÓÈ«äȯÒÈÓËm©¯ºÎËÓÓÈ«}È}äȯÒȯÈäÈÈÏÒ°Ó©²mË}º¯ºm
|äËÒäÁº¯äÈãӺ˰ºm¹ÈËÓÒ˹ºãËÓÓº®Áº¯äã©°m˯ÎËÓÒËä˺¯Ë
ä© }ºº¯ºË ¹ºÏmºã«Ë ÏÈ}ãÒ º º¹ÒäÈãÓ©Ë ÏÓÈËÓÒ« }ºªÁÁÒÒËÓºm
],0[; nk
k
=
∗
ξ
°}ºº¯ÒÓÈ©ªãËäËÓÈ
f
mÈÏÒ°Ë
{(),[,]}gg k n
kk
==
τ
0
mºä°ãÈË
}ºÈ
f
¹¯ÒÓÈãËÎÒãÒÓˮӺ®ººãº}Ë
∗
Λ
sÈ®ËääÒÓÒäÈãÓºËÏÓÈËÓÒË
2
ρ
.),(),(),(
),(),(),(),(
00
000
2
)(
∑∑
∑∑∑
=
∗
=
∗
=
∗
==
∗∗
−=−=
=+−+−=
n
k
kk
n
k
kk
n
i
iki
n
k
n
k
kkkk
gffgfff
gggfgfff
ξ
ξ
ξ
ξ
ξ
ρ
jÓÈ˺mº¯«¹ºãËÓÓºËm©¯ÈÎËÓÒ˯ÈmÓºÓ㹯Ò
∑
=
∗
=
n
k
kk
gf
0
ξ
ȪººÏÓÈ
È˺ÒÏËÎȹº¯ËÓº°Òȹ¹¯º}°ÒäÈÒÒäºÎÓºãÒm°ãÈË}ºÈªãËäËÓ
f
¹¯ÒÓÈãËÎÒ¹º¹¯º°¯ÈÓ°m
∗
Λ
cÈÏËã
¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®Èã˯©
iÈãËË ã« }¯È}º°Ò Ëä º¹°}È È¯äËÓ© ªãËäËÓºm m E º ˰ Ëä
n
ººÏÓÈÈ ÁÓ}Ò f(τ)}È} f∈EzmȯȯȰ°º«ÓÒ«äËΪãËäËÓÈäÒ fÒ ∑ ξ k g k m
k =0
n n
E¯ÈmËÓ ρ 2 = ( f − ∑ξ k g k , f − ∑ ξ k g k ) ºË¯ËäÏÓÈËÓÒ«}ºªÁÁÒÒËÓºm ξ k , k = [0, n]
k =0 k =0
È}º©mËãÒÒÓÈ ρ º}ÈÏÈãȰ äÒÓÒäÈã Óº®
2
{°ÒãÒãÒÓˮӺ°Ò°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«¹ºãÈËä
n n n n n
ρ 2 = ( f − ∑ ξ k g k , f − ∑ξ k g k ) = ( f , f ) − 2 ∑ ξ k ( f , g k ) + ∑∑ ξ k ξ i ( g k , g i )
k =0 k =0 k =0 k = 0i = 0
ÈÒϰãºmÒ®¯ÈmËÓ°mÈÓã Ȱө²¹¯ºÒÏmºÓ©²º ρ 2 ¹ºm°Ëä ξ k , k = [0, n] ºË°
ÒϰҰËä©ãÒÓˮө²¯ÈmÓËÓÒ®
n
∑ξ i∗ ( g k , g i ) = ( f , g k ) , k = [0, n]
i =0
ÓȲº«°«º¹ÒäÈã Ó©ËÏÓÈËÓÒ«}ºªÁÁÒÒËÓºm ξk∗ , k = [ 0, n] ¹¯Ò}ºº¯©² ρ 2 äÒÓÒ
äÈã Óº ~ÈäËÒä º ÈÓÓÈ« °Ò°ËäÈ ¯ÈmÓËÓÒ® ÒäËË ËÒÓ°mËÓÓºË ¯Ë ËÓÒË
¹º°}ºã }Ë˺°ÓºmÓÈ«äȯÒÈÓËm©¯ºÎËÓÓÈ«}È}äȯÒȯÈäÈÈÏÒ°Ó©²mË}º¯ºm
|äËÒäÁº¯äÈã Ӻ˰ºm¹ÈËÓÒ˹ºãËÓÓº®Áº¯äã©°m˯ÎËÓÒËä˺¯Ë
ä© }ºº¯ºË ¹ºÏmºã«Ë ÏÈ}ã Ò º º¹ÒäÈã Ó©Ë ÏÓÈËÓÒ« }ºªÁÁÒÒËÓºm
ξ k∗ ; k = [0, n] ° }ºº¯ÒÓÈ©ªãËäËÓÈ fmÈÏÒ°Ë { g k = g k (τ ) , k = [0, n] } mºä°ãÈË
}ºÈf¹¯ÒÓÈãËÎÒãÒÓˮӺ®ººãº}Ë Λ∗
sÈ®ËääÒÓÒäÈã ÓºËÏÓÈËÓÒË ρ 2
n n n
ρ 2 = ( f , f ) − ∑ξ k∗ ( f , g k ) + ∑ξ k∗ (−( f , g k ) + ∑ξ i∗ ( g k , g i )) =
k =0 k =0 i =0
n n
= ( f , f ) − ∑ξ k∗ ( f , g k ) = ( f , f − ∑ξ k∗ g k ).
k =0 k =0
n
jÓÈ˺mº¯«¹ºãËÓÓºËm©¯ÈÎËÓÒ˯ÈmÓºÓã ¹¯Ò f = ∑ ξ k∗ g k ȪººÏÓÈ
k =0
È˺ÒÏËÎÈ ¹º¯Ë Óº°Òȹ¹¯º}°ÒäÈÒÒäºÎÓºãÒ m°ãÈË}ºÈªãËäËÓ f
¹¯ÒÓÈãËÎÒ¹º¹¯º°¯ÈÓ°m Λ∗
Страницы
- « первая
- ‹ предыдущая
- …
- 291
- 292
- 293
- 294
- 295
- …
- следующая ›
- последняя »
