Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 294 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
rºãËË°ºË¯ÎÈËãÓÈ«ºËÓ}ÈmËãÒÒÓ©¹º¯ËÓº°Òȹ¹¯º}°ÒäÈÒÒ
2
ρ
¹ºã
ÈË°« ¹¯Ò ¹º°ÈÓºm}Ë m ¹¯Èm Ȱ ¯ÈmËÓ°mÈ
=
=
n
k
kk
gff
0
2
),(
ξ
ρ
}ºÓ}¯ËÓ©²
º¹ÒäÈãÓ©²ÏÓÈËÓÒ®
],0[,
nk
k
=
ξ
ÓȲºÒ䩲 ¹¯Ò¯ËËÓÒÒ°Ò°Ëä©ãÒÓˮө²¯Èm
ÓËÓÒ®  ~ÈäËÒä º ªº °ËãÈ º¯ÈϺ ºÓËË m °ãÈË º¯ºÓº¯äÒ¯ºmÈÓÓºº
ÈÏÒ°È¹º¹¯º°¯ÈÓ°mÈ
Λ

¯ÒäËÓËÓÒË } Ó˺¯ººÓÈãÓºä ÈÏÒ°
}],0[,)({
nkgg
k
kk
===
ττ
¹¯ºË¯©
º¯ººÓÈãÒÏÈÒÒ ¯ÈäÈbäÒÈ Ò°¹ºãϺmÈÓÓº® ¹¯Ò º}ÈÏÈËã°mË ˺¯Ëä© 
ÈËÓËÓº¯äÒ¯ºmÈÓÓ°Ò°Ëäº¯ººÓÈãÓ©²äÓººãËÓºmmÒÈ
=
=
=−
=−
=−
eee e e
d
d
n
n
n
n
01 2
2
3
32
1
1
3
3
5
1() ; () ; () ; () ; ...; () ( )
τττττ τττ τ
τ
τ

ÓÈÏ©mÈË䩲wvsqtvujuqÉnjtléj
º°}ºã}m°Ë¹¯Ë©ÒËÒ°ãËÓÒ« ËãÈãÒ°ã«ÈÏÒ°È
}],0[,{
nkg
k
k
==
τ
ËÏ ËÈ ˺ }ºÓ}¯ËÓºº È º ºÓÒ  Ò °¹¯ÈmËãÒm© ã« º¯ººÓÈãÓºº Óº
mººËºmº¯«ÓËÓº¯äÒ¯ºmÈÓÓººÈÏÒ°È
}],0[,)1()({ nk
d
d
e
k
k
k
k
==
2
τ
τ
τ

iã« º¯ººÓÈãÓºº ÈÏÒ°È äÈ¯ÒÈ ¯ÈäÈ ÒȺÓÈãÓÈ« Ò °ã˺mÈËãÓº °Ò°ËäÈ
¯ÈmÓËÓÒ® 
],0[,),(),(
0
nkefee
k
n
i
iki
=
=
=
ξ
Ë ÒäË¯ËËÓÒ« È
],0[;
),(
),(
nk
ee
ef
kk
k
k
=
=
ξ
ÈmËãÒÒÓÈ
2
ρ

==
=
=
n
k
kk
k
n
k
kk
ee
ef
ffeff
00
),(
),(
),(),(
2
2
ξ
ρ

p°ãÒÎË}¯ºäËºº ÈÏÒ°
{, [,]}
ek n
k
=
0
º¯ºÓº¯äÒ¯ºmÈÓÓ©® º ˰
(,) ,, [,]
ee ki n
ki ki
==
δ
0
ºÈ
],0[;),(
nkef
kk
==
ξ
Ò
=
=
n
k
k
f
0
2
2
2
ξ
ρ

|äËÒä º ÏÓÈËÓÒ«
],0[,
nk
k
=
ξ
 º¹ÒäÈãÓ©² }ºªÁÁÒÒËÓºm ȹ¹¯º}
°ÒäÒ¯˺äÓººãËÓÈÁº¯äÈãÓº°ºm¹ÈÈ
°
 v ¯ËËÓÒËä ÏÈÈÒ º ÓȲºÎËÓÒÒ º¯ººÓÈãÓº® ¹¯ºË}ÒÒ ªãËäËÓÈ
f
Ëm}ãÒºmÈ¹¯º°¯ÈÓ°mÈÓÈ¹º¹¯º°¯ÈÓ°mº
Λ

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



            rºãË˰º˯ÎȈËã ÓÈ«ºËÓ}ÈmËãÒÒÓ©¹º¯Ë Óº°ˆÒȹ¹¯º}°ÒäÈÒÒ ρ 2 ¹ºã‚
                                                                                                                    n
Èˈ°« ¹¯Ò ¹º°ˆÈÓºm}Ë m ¹¯Èm‚  Ȱˆ  ¯ÈmËÓ°ˆmÈ ρ 2 = ( f , f −                                             ∑ ξ k∗ g k )  }ºÓ}¯ËˆÓ©²
                                                                                                                   k =0
º¹ˆÒäÈã         Ó©²ÏÓÈËÓÒ® ξ k∗
                             , k = [0, n] ÓȲºÒ䩲¹¯Ò¯Ë ËÓÒÒ°Ò°ˆËä©ãÒÓˮө²‚¯Èm
ÓËÓÒ®  ~ÈäˈÒä ˆº ªˆº °ËãȈ  º¯ÈϺ ‚º­ÓËË m °ã‚ÈË º¯ˆºÓº¯äÒ¯ºmÈÓÓºº
­ÈÏҰȹº¹¯º°ˆ¯ÈÓ°ˆmÈ Λ∗ 
       
      ¯ÒäËÓËÓÒË } Ó˺¯ˆººÓÈã Óºä‚ ­ÈÏÒ°‚ { g k = g k (τ ) = τ k , k = [0, n] }  ¹¯ºË‚¯©
º¯ˆººÓÈãÒÏÈÒÒ €¯ÈäÈbäÒˆÈ Ò°¹ºã ϺmÈÓÓº® ¹¯Ò º}ÈÏȈËã °ˆmË ˆËº¯Ëä© 
ÈˈÓËÓº¯äÒ¯ºmÈÓӂ °Ò°ˆË䂺¯ˆººÓÈã Ó©²äÓººãËÓºmmÒÈ
        
                                                                1                   3                    dn
       e0′ (τ ) = 1 ; e1′ (τ ) = τ ; e2′ (τ ) = τ 2 −             ; e3′ (τ ) = τ 3 − τ ; ... ; en′ (τ ) = n (τ 2 − 1) n 
                                                                3                   5                    dτ
       
ÓÈÏ©mÈË䩲wvsqtvujuqÉn jtléj
       
       
        º°}ºã }‚ m°Ë ¹¯Ë©‚ÒË m©Ò°ãËÓÒ« ËãÈãÒ°  ã« ­ÈÏÒ°È { g k = τ k , k = [0, n] } 
­ËÏ ‚ˈÈ Ëº }ºÓ}¯ËˆÓºº mÒÈ ˆº ºÓÒ ­‚‚ˆ Ò °¹¯ÈmËãÒm© ã« º¯ˆººÓÈã Óºº Óº
mºº­Ëºmº¯«ÓËÓº¯äÒ¯ºmÈÓÓºº ­ÈÏÒ°È
                                                                    dk
                                                     { ek′ (τ ) =            (τ 2 − 1) k , k = [0, n] } 
                                                                    dτ   k
iã« º¯ˆººÓÈã Óºº ­ÈÏÒ°È äȈ¯ÒÈ €¯ÈäÈ ÒȺÓÈã ÓÈ« Ò °ã˺mȈËã Óº °Ò°ˆËäÈ
                                       n
‚¯ÈmÓËÓÒ®                   ∑ξ i (ek′ , ei′ ) = ( f , ek′ ) , k = [0, n]        ­‚ˈ        Òäˈ             ¯Ë ËÓÒ«       mÒÈ
                                     i =0
       ( f , ek′ )
ξ k∗ =              ; k = [0, n] ÈmËãÒÒÓÈ ρ 2 
       (ek′ , ek′ )
                                                            n                              n
                                                                                             ( f , ek′ ) 2
                                       ρ2 = ( f , f −      ∑ ξ k∗ek′ ) = ( f , f ) −     ∑ (e′ , e′ ) 
                                                          k =0                           k =0 k k

p°ãÒ       ÎË     }¯ºäË ˆºº ­ÈÏÒ°                       { e k , k = [0, n] }  º¯ˆºÓº¯äÒ¯ºmÈÓÓ©® ˆº ˰ˆ 
                                                                                                             n
(e k , ei ) = δ ki , k , i = [0, n] ˆºÈ ξ k∗ = ( f , ek ) ; k = [0, n] Ò ρ 2 = f                     ∑ ξ k∗2 
                                                                                                    2
                                                                                                        −
                                                                                                            k =0
            
            
      |ˆäˈÒä ˆº ÏÓÈËÓÒ« ξ k∗ , k = [0, n]   º¹ˆÒäÈã Ó©² }ºªÁÁÒÒËӈºm ȹ¹¯º}
°ÒäÒ¯‚ ËºäÓººãËÓÈÁº¯äÈã Óº°ºm¹ÈÈ ˆ
      
        ° v ¯Ë ËÓÒËä ÏÈÈÒ º ÓȲºÎËÓÒÒ º¯ˆººÓÈã Óº® ¹¯ºË}ÒÒ ªãËäËӈÈ f
                         Ëm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmÈÓȹº¹¯º°ˆ¯ÈÓ°ˆmº Λ∗