Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 292 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
k¹¹¯º}°ÒäÈÒ«ÁÓ}Ò®äÓººãËÓÈäÒ
ÈÈ ¹º°¯ºËÓÒ« ÓÈÒã˺ m ÓË}ºº¯ºä °ä©°ãË ¹¯ÒãÒÎËÓÒ«ÏÈÈÓÓº® ÓÈ
[a,b]
ÁÓ}ÒÒ
f
()
τ
ãÒÓˮӺ® }ºäÒÓÈÒË® ÓË}ºº¯©² ¯Ò² ÁÓ}Ò®
ggg g
n
012
( ), ( ), ( ),..., ( ),...
τττ τ
,º¹¯ËËãËÓÓ©² Ò ºãÈÈÒ² ºãËË ¹¯ÒmãË}ÈËãÓ©äÒ °
º}Ò ϯËÓÒ« º°mÈ Ò² Ò°°ã˺mÈÓÒ« ¹º °¯ÈmÓËÓÒ°
f
()
τ
 °mº®°mÈäÒ ÓÈ
τ
[a,b]

º°ÈºÓºȰºm°¯ËÈË°«m¯ÈÏãÒÓ©²¹¯ÒãºÎËÓÒ«²
{mÒ ºãºº ¯ÈÏÓºº¯ÈÏÒ« ¹º°ÈÓºmº} ÏÈÈªºº }ãȰ°È ä© º¯ÈÓÒÒä°«
¯È°°äº¯ËÓÒËäãÒm²ÒÏÓÒ²ÒäË«Ëãºã}º¹¯ºÒãã°¯Ò¯ºmÈÓÈ¹¯Òä˯ËÒ²
¯ËËÓÒ«Ò°¹ºãϺmÈÓÒËäËººmãÒÓˮӺ®ÈãË¯©
cȰ°äº¯Òä m˰mË ºË}È ȹ¹¯º}°ÒäÈÒÒ
Ó˹¯Ë¯©mÓÓÈ
[-

]
ÁÓ}Ò
f ()
τ
 È m ˰mË ȹ¹¯º}°ÒäÒ¯Ò² ÁÓ}Ò® m©˯Ëä ºÓºãËÓ© È
{() , [,]}gkn
k
k
ττ
==0
 ÈÈ °º°ºÒ m º©°}ÈÓÒÒ ÈãË¯ÈÒ˰}ºº äÓººãËÓÈ
°˹ËÓÒÓËË
n

=
=
n
k
k
kn
P
0
)(
τ
ξ
τ
}ºº¯©®ÓÈÒãÒäº¯ÈϺä¹¯ÒãÒÎÈËÁÓ}Ò
I()
τ

¯ËmȯÒËãÓºÏÈäËÒäºäÓºÎ˰mºÓ˹¯Ë¯©mÓ©²ÓÈ
[-

]
ÁÓ}Ò®º¯È
ÏËãÒÓˮӺË¹¯º°¯ÈÓ°mº
Λ
ªãËäËÓÈäÒ}ºº¯ºº«mã«°«ÒÁÓ}ÒÒ
g
k
()
τ
¹¯Ò
Ëä ãÒÓË®ÓÈ« ººãº}È °ºmº}¹Óº°Ò ªãËäËÓºm
{() , [,]}gkn
k
k
ττ
==0
˰
Λ

n
ä˯ӺË ¹º¹¯º°¯ÈÓ°mº ¹¯º°¯ÈÓ°mÈ
Λ
 m ˰mË ÈÏÒ°È }ºº¯ºº äºÎÓº
mÏ«ÓÈº¯ªãËäËÓºm
}],0[,)({ nkgg
kk
==
τ

iã« }ºãÒ˰mËÓÓº® ºËÓ}Ò ˰mÈ ȹ¹¯º}°ÒäÈÒÒ ºÓº® ÁÓ}ÒÒ ¯º®
mmËËäm
Λ
°}È㫯ӺË¹¯ºÒÏmËËÓÒË¹ºÁº¯äãË
(,) ()()
xy x y d
=
τττ
1
1
Ò¹¯Ëm¯ÈÒä˺
Ëä °Èä©ä m Ëm}ãÒºmº ¹¯º°¯ÈÓ°mº
E
 ºÈ ä˯È ãÒϺ°Ò ªãËäËÓºm
x()
τ
Ò
y()
τ
äºÎË©ºËÓËÓÈmËãÒÒÓº®
ρ
τττ
=−= =
xy xyxy x y d( , ) ( () ())
2
1
1

ÓÈÏ©mÈË亮 ÒÓºÈ éjxxzv¹tqnu unly
x()
τ
q
y()
τ
k
E
 }ºº¯È« m °Òã °mº®°m
º¹¯ËËãËÓÓ©²ÒÓ˯Èãºm¯ÈmÓÈÓãºã}ºm°ãÈË
xy() ()
ττ
=
ã«
∀∈
τ
[,]11

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



k¹¹¯º}°ÒäÈÒ«Á‚Ó}Ò®äÓººãËÓÈäÒ
              
              
              
         ~ÈÈÈ ¹º°ˆ¯ºËÓÒ« ÓÈÒ゠˺ m ÓË}ºˆº¯ºä °ä©°ãË  ¹¯Ò­ãÒÎËÓÒ« ÏÈÈÓÓº® ÓÈ
[a,b] Á‚Ó}ÒÒ f (τ )  ãÒÓˮӺ® }ºä­ÒÓÈÒË® ÓË}ºˆº¯©² ¯‚Ò² Á‚Ó}Ò®
g 0 (τ ), g1 (τ ), g 2 (τ ),..., g n (τ ),... , º¹¯ËËãËÓÓ©² Ò º­ãÈÈ Ò² ­ºãËË ¹¯ÒmãË}ȈËã Ó©äÒ °
ˆº}Ò ϯËÓÒ« ‚º­°ˆmÈ Ò² Ò°°ã˺mÈÓÒ« ¹º °¯ÈmÓËÓÒ  ° f (τ )  °mº®°ˆmÈäÒ ÓÈ τ∈[a,b]
º°ˆÈˆºÓºȰˆºm°ˆ¯ËÈˈ°«m¯ÈÏãÒÓ©²¹¯ÒãºÎËÓÒ«²
          
          {mÒ‚ ­ºã ºº ¯ÈÏÓºº­¯ÈÏÒ« ¹º°ˆÈÓºmº} ÏÈÈ ªˆºº }ãȰ°È ä© º¯ÈÓÒÒä°«
¯È°°äºˆ¯ËÓÒËäãÒ m‚²ÒÏÓÒ²ÒäË«Ëã ˆºã }º¹¯ºÒãã °ˆ¯Ò¯ºmȈ Óȹ¯Òä˯ËÒ²
¯Ë ËÓÒ«Ò°¹ºã ϺmÈÓÒËäˈººmãÒÓˮӺ®ÈãË­¯©
          
          cȰ°äºˆ¯Òä m }È˰ˆmË º­žË}ˆÈ ȹ¹¯º}°ÒäÈÒÒ Ó˹¯Ë¯©mӂ  ÓÈ [-] Á‚Ó}Ò 
 f (τ )  È m }È˰ˆmË ȹ¹¯º}°ÒäÒ¯‚ Ò² Á‚Ó}Ò® m©­Ë¯Ëä ºÓºãËÓ© mÒÈ
{ g k (τ ) = τ k , k = [0, n] }  ~ÈÈÈ °º°ˆºÒˆ m ºˆ©°}ÈÓÒÒ ÈãË­¯ÈÒ˰}ºº äÓººãËÓÈ
                                               n
°ˆË¹ËÓÒÓËm© Ën Pn (τ ) =                ∑ ξ k τ k }ºˆº¯©®ÓÈÒã‚                  Ò亭¯ÈϺ乯ҭãÒÎÈˈÁ‚Ó}Ò 
                                             k =0
I(τ ) 
      
      ¯Ëmȯ҈Ëã ÓºÏÈäˈÒ䈺äÓºÎ˰ˆmºÓ˹¯Ë¯©mÓ©²ÓÈ [-]Á‚Ó}Ò®º­¯È
ςˈãÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº Λ ªãËäËӈÈäÒ}ºˆº¯ºº«mã« ˆ°«ÒÁ‚Ó}ÒÒ g k (τ ) ¹¯Ò
Ëä ãÒÓË®ÓÈ« º­ºãº}È °ºmº}‚¹Óº°ˆÒ ªãËäËӈºm { g k (τ ) = τ k , k = [0, n] }  ˰ˆ  Λ∗  
nä˯ӺË ¹º¹¯º°ˆ¯ÈÓ°ˆmº ¹¯º°ˆ¯ÈÓ°ˆmÈ Λ  m }È˰ˆmË ­ÈÏÒ°È }ºˆº¯ºº äºÎÓº
mÏ«ˆ ÓÈ­º¯ªãËäËӈºm{ g k = g k (τ ) , k = [0, n] } 
           
           
           iã« }ºãÒ˰ˆmËÓÓº® ºËÓ}Ò }È˰ˆmÈ ȹ¹¯º}°ÒäÈÒÒ ºÓº® Á‚Ó}ÒÒ ¯‚º®
                                                                                                1
mmËËä m Λ °}È㫯Ӻ˹¯ºÒÏmËËÓÒ˹ºÁº¯ä‚ãË ( x , y ) =                                   ∫ x(τ ) y(τ )dτ Ò¹¯Ëm¯ÈˆÒä˺
                                                                                               −1
ˆËä °Èä©ä m Ëm}ãÒºmº ¹¯º°ˆ¯ÈÓ°ˆmº E ‘ºÈ ä˯È ­ãÒϺ°ˆÒ ªãËäËӈºm x(τ )  Ò y(τ )
äºÎˈ­©ˆ ºËÓËÓÈmËãÒÒÓº®
       
                                                                                   1
                                ρ= x−y =               ( x − y, x − y) =          ∫ ( x(τ ) − y(τ ) ) 2 dτ       
                                                                                  −1
      
 ÓÈÏ©mÈË亮 ÒÓºÈ éjxxzv¹tqnu un ly x(τ )  q y(τ )  k E  }ºˆº¯È« m °Òã‚ °mº®°ˆm
º¹¯ËËãËÓÓ©²Òӈ˯Èãºm¯ÈmÓÈӂã ˆºã }ºm°ã‚ÈË x (τ ) = y (τ ) ã« ∀τ ∈[ −11, ]