Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 296 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
ÓÒË }ºº¯ºº ÈË°« Áº¯ä㺮
x
ee
()
τα
τ
β
τ
λλ
=+
−−
 Ë
α
Ò
β
 ¹¯ºÒÏmºãÓ©Ë
}ºÓ°ÈÓ©
jÏ°ãºmÒ®
xx() ()−=11
Ò
dx
d
dx
d
ττ
=
11
¹ºãÈËä
ee
−−
−=
λλ
0
ÒãÒ¹º{vé
uysnêpsnéj°ä¹¯ÒãºÎËÓÒË
sin
λ
= 0
|}È°º°mËÓÓ©ËÏÓÈËÓÒ«
λπ
k
kk
==
22
012, , , ,...
ÒºmËÈÒËÒä°º°mËÓÓ©ËmË}º¯©
τπητπ
ξ
τ
kkx
kkk
sincos)( +=

Ò°ãÈ
k
ξ
Ò
k
η
Ï˰¹¯ºÒÏmºãÓ©ËÓºÓË¯ÈmÓ©ËÓãºÓºm¯ËäËÓÓº ã«}Èκº
k

È}Òä º¯ÈϺä ä© ¹ºãÒãÒ °Ò°Ëä ¹º¹È¯Óº º¯ººÓÈãÓ©² ªãËäËÓºm ãÒ
ÓË®ÓÈ« ººãº}È }ºº¯©²«mã«Ë°« ¹º ¹¯º°¯ÈÓ°mºä Ëm}ãÒºmÈ ¹¯º°¯ÈÓ°mÈ Ó˹¯Ë
¯©mÓ©² ÓÈ
[

]
ÁÓ}Ò® wÈ °Ò°ËäÈ È} ÎË }È} °Ò°ËäÈ ¹ºãÒÓºäºm ËÎÈÓ¯È
äºÎË © Ò°¹ºãϺmÈÓÈ ã« ¹º°¯ºËÓÒ« ȹ¹¯º}°ÒäÒ¯Ò² äÓººãËÓºm ºÓÈ}º m
ÈÓÓºä°ãÈËªÒäÓººãËÓ©¯ÒºÓºäË¯Ò˰}ÒäÒ
~ÈäËÈÓÒË
wvsy·nttn énoyszjz wéqkvl¹z r nxznxzknttvuy kvwévxy uvtv sq
yunt¡qz wvmén¡tvxz jwwévrxquj|qq oj x ·nz yknsq·ntq¹
n
" Êsq qtj·n
mvkvé¹xwéjknlsqkvsqéjkntxzkv
lim ( )
n
k
k
n
f
→∞
=
−=
2
2
ξ
0
0
"
|mËÓÈªºmº¹¯º°mºËä°ãÈËº¯ÒÈËãÓ©®cȰ°äº¯ÒäÓȹ¯Ò
ä˯ÓË}ºº¯ºË¹º¹¯º°¯ÈÓ°mº
E
Ëm}ãÒºmÈ ¹¯º°¯ÈÓ°mÈ
E
ÓË ÒäËËË
ÈÏÒ°Èº˰
E
˰}ºÓËÓºä˯ӺËÒ¹°°˰mËÓËÓãËmº®ªãË
äËÓ
f
E
 Óº
f
E
È}º®º
(, ) ;fg k
k
=∀
0
Ë m°Ë
Eg
k
 È Ò² ãºË
}ºÓËÓºË¹ºäÓºÎ˰mºãÒÓˮӺÓËÏÈmÒ°Òäº{ªºä°ãÈËm°Ëȹ¹¯º}°Ò
äÒ¯ÒË }ºªÁÁÒÒËÓ© ¯ÈmÓ© ÓãÒÈÓÓºË ¹¯ËËãÓºË ¯ÈmËÓ°mº
ºËmÒÓºÓËm©¹ºãÓ«Ë°«
°ãºmÒ« mºÏäºÎÓº°Ò ¹º°¯ºËÓÒ« ãÒÓˮӺ® }ºäÒÓÈÒÒ ÒÏ ªãËäËÓºm
äÓºÎ˰mÈ
{ , , , ,...}
gk
k
=
012
 ȹ¹¯º}°ÒäÒ¯Ë®
∀∈
fE
°ãº® Óȹ˯Ë
ÏÈÈÓÓº®ºÓº°m©²º«ÏÈ¯Èä}Ò¹¯ËäËÈãÒÓˮӺ®ÈãË¯©ÒÒÏ
È°«m}¯°ËäÈËäÈÒ˰}ººÈÓÈãÒÏÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



ÓÒË }ºˆº¯ºº Èˈ°« Áº¯ä‚㺮 x (τ ) = α eτ − λ + β e −τ − λ  Ë α Ò β  ¹¯ºÒÏmºã Ó©Ë
}ºÓ°ˆÈӈ©
        

                                                         dx            dx
            jÏ‚°ãºmÒ® x ( −1) = x (1) Ò                        =            ¹ºã‚ÈËä e − λ − e − − λ = 0 ÒãÒ¹º{vé
                                                         dτ   −1
                                                                       dτ   1

uysnêpsnéj °ä¹¯ÒãºÎËÓÒË  sin λ = 0 |ˆ}‚Ȱº­°ˆmËÓÓ©ËÏÓÈËÓÒ«­‚‚ˆ
                                                              λ k = π 2 k 2 , k = 0,1,2,... 
       
ÒºˆmËÈ ÒËÒä°º­°ˆmËÓÓ©ËmË}ˆº¯©
       
                                     xk (τ ) = ξ k cos π kτ + ηk sin π kτ 
        
   Ò°ãÈ ξ k Ò ηk Ï˰ ¹¯ºÒÏmºã Ó©Ë ÓºÓ˯ÈmÓ©Ëӂã ºÓºm¯ËäËÓÓºã«}Èκºk 
        
        
        ‘È}Òä º­¯ÈϺä ä© ¹ºã‚ÒãÒ °Ò°ˆËä‚ ¹º¹È¯Óº º¯ˆººÓÈã Ó©² ªãËäËӈºm ãÒ
ÓË®ÓÈ« º­ºãº}È }ºˆº¯©² «mã«Ëˆ°« ¹º¹¯º°ˆ¯ÈÓ°ˆmºä Ëm}ãÒºmÈ ¹¯º°ˆ¯ÈÓ°ˆmÈ Ó˹¯Ë
¯©mÓ©² ÓÈ [] Á‚Ó}Ò® wˆÈ °Ò°ˆËäÈ ˆÈ} ÎË }È} °Ò°ˆËäÈ ¹ºãÒÓºäºm ËÎÈÓ¯È 
äºÎˈ ­©ˆ  Ò°¹ºã ϺmÈÓÈ ã« ¹º°ˆ¯ºËÓÒ« ȹ¹¯º}°ÒäÒ¯‚ Ò² äÓººãËÓºm ºÓÈ}º m
ÈÓÓºä°ã‚È˪ˆÒäÓººãËÓ©­‚‚ˆˆ¯ÒºÓºäˈ¯Ò˰}ÒäÒ
        
        
        
        
~ÈäËÈÓÒËwvsy·ntt€n énoyszjz€ wéqkvl¹z r nxznxzknttvuy kvwévxy uv tv sq
              yunt¡qz wvmén¡tvxz jwwévrxquj|qq oj x·nz yknsq·ntq¹ n " Êsq qtj·n
                                                                                                n
                                                                                             − ∑ ξk∗2 ) = 0 "
                                                                                         2
                   mvkvé¹xwéjknlsqkvsqéjkntxzkv lim ( f
                                                                            n→∞                k =0


                   |ˆmˈÓȪˆºˆmº¹¯º°mº­Ëä°ã‚È˺ˆ¯ÒȈËã Ó©®cȰ°äºˆ¯ÒäÓȹ¯Ò
                   ä˯ÓË}ºˆº¯ºË¹º¹¯º°ˆ¯ÈÓ°ˆmº E ∗ Ëm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmÈEÓËÒäË ËË
                   ­ÈÏÒ°È ˆº˰ˆ  E ∗ ­Ë°}ºÓËÓºäË¯ÓºË Ò¹‚°ˆ °‚Ë°ˆm‚ˈÓËӂãËmº®ªãË
                   äËӈ f∈E Óº f∉ E ∗  ˆÈ}º® ˆº ( f , g k ) = 0 ; ∀k  Ë m°Ë g k ∈ E ∗  È Ò² ã ­ºË
                   }ºÓËӺ˹ºäÓºÎ˰ˆmºãÒÓˮӺÓËÏÈmÒ°Òäº {ªˆºä°ã‚ÈËm°Ëȹ¹¯º}°Ò
                   äÒ¯‚ ÒË }ºªÁÁÒÒËӈ© ¯ÈmÓ© ӂã  Ò ÈÓÓºË ¹¯ËËã ÓºË ¯ÈmËÓ°ˆmº
                   ºËmÒÓºÓËm©¹ºãӫˈ°«
                   
                   °ãºmÒ« mºÏäºÎÓº°ˆÒ ¹º°ˆ¯ºËÓÒ« ãÒÓˮӺ® }ºä­ÒÓÈÒÒ ÒÏ ªãËäËӈºm
                   äÓºÎ˰ˆmÈ {g k , k = 0,1,2,...}  ȹ¹¯º}°ÒäÒ¯‚ Ë® ∀f ∈ E  ° ã ­º® Óȹ˯Ë
                   ÏÈÈÓÓº®ˆºÓº°ˆ m©²º«ˆÏȯÈä}Ò¹¯ËäˈÈãÒÓˮӺ®ÈãË­¯©ÒÒς
                   È ˆ°«m}‚¯°ËäȈËäȈÒ˰}ººÈÓÈãÒÏÈ