Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 297 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
¯ÒãºÎËÓÒË
v{|qv{kjsjq{|c|||cÐizk
sk|vz|vj
{¹Ó}Ë©ãÒ¹Ë¯ËÒ°ãËÓ© }ºÓ}¯ËÓ©ËÒ¹©ãÒÓÒ®mº¯ºº¹º¯«}È ¯ÈÏ
ãÒÒËä ËÎ }ºº¯©äÒ°º²¯ÈÓ«Ë°«¹¯Ò¹Ë¯Ë²ºËÒÏºÓº®Ë}ȯºmº®°Ò°Ëä©}ºº¯
ÒÓÈ m ¯ { ÈÓÓºä ¹¯ÒãºÎËÓÒÒ  ¯È°°äº¯ËÓ© ²È¯È}˯өË °mº®°mÈ ªÒ²
ãÒÓÒ®
¯{©¯ºÎËÓÓ©ËãÒÓÒÒmº¯ºº¹º¯«}È
z kévlnttu sqtq¹u kzvévmv wvé¹lrjËä ºÓº°Òm°ËÒ¹©¹Ë¯ËÒ°
ãËÓÓ©Ëm¹Ë¯m©²Ë©¯Ë²°ºãȲÈãÒ©˺¯Ëä©z¯È}ºº¹ÒËäÒ²°mº®°mÈ
°Ò¹ãÒÓÒÒÙs˰ºm¹È ÈÒË¹¯«ä©Ëµ
¯ÈmÓËÓÒË
0
2
2
2
2
=
b
y
a
x
º¹¯ËËã«Ë ¹È¯ ¹Ë¯Ë°Ë}ÈÒ²°« ¹¯«ä©² m °Ò°ËäË
}ºº¯ÒÓÈ
},,{
21
eeO
 { °mººË¯Ë ¯ÈmÓËÓÒË
22
ay
=
¹¯Ò
a
0
º¹¯ËËã«Ë ¹È¯
¹È¯ÈããËãÓ©²¹¯«ä©²
¯Òä˯
¯
° ÓÈ ¹ãº°}º°Ò
},,{
21
eeO
ÏÈÈÓÈ ãÒÓÒ«
mº¯ºº ¹º¯«}È
043
22
=++
yxyx

¯Ëº¯ÈϺmÈm ËË ¯ÈmÓËÓÒË
} 
()20
22
xy x
+−=
äËºȯÈÓÎÈ ¹ºãÒä
mË ¹¯«ä©Ë
yx=−
Ò
yx=−3
cÒ°¯
 y
y 
x

α
 Ox
èqxytvr¯
¯ÒãºÎËÓÒË
vmº®°ˆmÈãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ



             
             
             
             
             
             
             
¯ÒãºÎËÓÒË
v{|qv‘{kjsjq{‘|c|€||cÐizk
sk|vz|v‘j
        
        
        
        
        {¹‚Ó}ˆË­©ãҹ˯ËÒ°ãËÓ©}ºÓ}¯ËˆÓ©ËˆÒ¹©ãÒÓÒ®mˆº¯ºº¹º¯«}ȯÈÏ
ãÒÒËäË΂}ºˆº¯©äÒ°º²¯Èӫˈ°«¹¯Ò¹Ë¯Ë²ºËÒϺӺ®Ë}ȯˆºmº®°Ò°ˆËä©}ºº¯
ÒÓȈ m ¯‚‚  { ÈÓÓºä ¹¯ÒãºÎËÓÒÒ ­‚‚ˆ ¯È°°äºˆ¯ËÓ© ²È¯È}ˆË¯Ó©Ë °mº®°ˆmÈ ªˆÒ²
ãÒÓÒ®
        
        
        
¯{©¯ºÎËÓÓ©ËãÒÓÒÒmˆº¯ºº¹º¯«}È
         
         
         z k€év lntt€u sqtq¹u kzvévmv wvé¹lrj ­‚Ëä ºˆÓº°Òˆ  m°Ë ˆÒ¹© ¹Ë¯ËÒ°
ãËÓÓ©Ëm¹Ë¯m©²ˈ©¯Ë²°ˆºã­ȲˆÈ­ãÒ©ˆËº¯Ëä©z¯Èˆ}ºº¹Ò ËäÒ²°mº®°ˆmÈ
         
         
         
°‘Ò¹ãÒÓÒÒÙs˰ºm¹ÈÈ Ò˹¯«ä©Ëµ
         
                                 x′2       y′2
             ¯ÈmÓËÓÒË                −         = 0  º¹¯ËËã«Ëˆ ¹È¯‚ ¹Ë¯Ë°Ë}È Ò²°« ¹¯«ä©² m °Ò°ˆËäË
                                  a2       b2
                         → →
}ºº¯ÒÓȈ {O ′, e1′ , e ′2 }  { °mº  º˯Ë  ‚¯ÈmÓËÓÒË y ′ 2 = a 2  ¹¯Ò a ≠ 0  º¹¯ËËã«Ëˆ ¹È¯‚
¹È¯ÈããËã Ó©²¹¯«ä©²
        
 ¯Òä˯         ‚°ˆ               ÓÈ     ¹ãº°}º°ˆÒ  y
    ¯                  → →                                            y ′  x ′ 
                         {O, e1, e 2 }          ÏÈÈÓÈ      ãÒÓÒ«
                                                                     
                         mˆº¯ºº                           ¹º¯«}È 
                          3x 2 + 4 xy + y 2 = 0                    
                                                          α
                         ¯Ëº­¯ÈϺmÈm ËË ‚¯ÈmÓËÓÒË              Ox
                         } mÒ‚ ( 2 x + y ) − x = 0 
                                                2     2    
                          äˈº ȯÈÓÎÈ  ¹ºã‚Òä 
                         mË ¹¯«ä©Ë         y = − x  Ò 
                                                           
                          y = −3x  cÒ°¯       
                                                                          èqxytvr¯