Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 299 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
¯«ä©Ë
ε
a
x ±=
ÓÈÏ©mÈ°«lqénrzéqxjuqªããÒ¹°È
Ò°ãº
a
b
p
2
=
ÓÈÏ©mÈË°«{vrjstuwjéjunzévuªããÒ¹°È
vmº®°mÈªããÒ¹°È
° wããÒ¹°º¯ÈÓÒËÓÓÈ« }¯ÒmÈ«
||
xa
Ò
||
yb
 º °ãËË ÒÏ
ÏȹҰÒ}ÈÓºÓÒ˰}ºº¯ÈmÓËÓÒ«mÁº¯äË
22
xa
a
b
y ±=

° wããÒ¹°
L
ºãÈÈËº°Ëmº®°ÒääË¯ÒË®ºÓº°ÒËãÓºº°Ë®
Ox
Ò
Oy
È
È}ÎËËÓ¯ÈãÓº®°ÒääË¯ÒË®ºÓº°ÒËã ÓºÓÈÈãÈ}ºº¯ÒÓÈwº
m©Ë}ÈËÒÏºÓºËÓÒ®
,
L
y
x
L
y
x
L
y
x
L
y
x
ºËmÒÓ©²ã«}ÈÓºÓÒ˰}ºº¯ÈmÓËÓÒ«ªããÒ¹°È
vmº®°mÈ ªããÒ¹°È Òãã
°¯Ò¯°« ¯Ò°Ó}ºä
¯
y
b
D
BAD
1

β

α
-aF
2
OF
1
ax
-b

x
a
=−
ε

x
a
=
ε
èqxytvr¯
¯ÒãºÎËÓÒË
vmº®°ˆmÈãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ



                                                a
                         ¯«ä©Ë x = ±            ÓÈÏ©mÈ ˆ°«lqénrzéqxjuqªããÒ¹°È
                                                ε
                         
                                           b2
                              Ұ㺠p =       ÓÈÏ©mÈˈ°«{vrjst€uwjéjunzévuªããÒ¹°È
                                           a
             
             
             
vmº®°ˆmȪããÒ¹°È
             
             
                     °      wããÒ¹°  º¯ÈÓÒËÓÓÈ« }¯ÒmÈ« | x | ≤ a  Ò | y | ≤ b  ˆº °ãË‚ˈ ÒÏ
                                                                                                                 b 2
                                ÏȹҰÒ}ÈÓºÓÒ˰}ºº‚¯ÈmÓËÓÒ«mÁº¯äË y = ±                                      a − x 2 
                                                                                                                 a
                     
                     °      wããÒ¹° Lº­ãÈÈˈº°Ëmº®°Òääˈ¯ÒË®ºˆÓº°ÒˆËã Óºº°Ë® OxÒ OyÈ
                                ˆÈ}ÎËËӈ¯Èã Óº®°Òääˈ¯ÒË®ºˆÓº°ÒˆËã ÓºÓÈÈãÈ}ºº¯ÒÓȈwˆº
                                m©ˆË}ÈˈÒϺˆÓº ËÓÒ®
                     
                                                       −x                        x                        x
                                                              ∈L      ⇔              ∈L       ⇔               ∈L
                                                          y                      y                     −y
                                                                                                                  
                                                                               −x
                                                                                     ∈ L,
                                                                               −y
                          
                     ºËmÒÓ©²ã«}ÈÓºÓÒ˰}ºº‚¯ÈmÓËÓÒ«ªããÒ¹°È
                  
                  
    vmº®°ˆmÈ ªããÒ¹°È Òãã  y
    °ˆ¯Ò¯‚ ˆ°«     ¯Ò°‚Ó}ºä 
    ¯                b
                             DBAD1
                               β
                              α
                                                  -aF2OF1ax
                                                  
                                                  
                                                  -b
                                                  
                                                                       a                                       a
                                                   x = −        x = 
                                                                       ε                                       ε
           
           
èqxytvr¯