Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 300 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
rËäººÏÓÈÈ˯ËÏ
),( QP
ρ
¯È°°º«ÓÒËäËÎ˺äË¯Ò˰}ÒäÒºË}ÈäÒ
P
Ò
Q
È˯ËÏ
α
Ò
β
ººÏÓÈÒäã©äËÎ}ȰÈËãÓº®ÒÁº}Èã Ó©äÒ¯ÈÒ°ÈäÒ
º¯ËÏ}ÈäÒ
AF
1
Ò
AF
2

˺¯ËäÈ
¯
°
A
x
y
˰º}È ¹¯ÒÓÈãËÎÈÈ« ªããÒ¹°
L
 ÏÈÈÓÓºä }È
ÓºÓÒ˰}Òä¯ÈmÓËÓÒËäºÈÒäËä˰º°ãËÒË°ººÓºËÓÒ«
°

;||;||
2211
xaAFrxaAFr
εε
+====
°

||||
FA FA a
12
2
→→
+=

°

ρ
ρ
ρ
ρ
ε
(, )
(, )
(, )
(, )
AF
AD
AF
AD
1
1
2
2
==

°

ρ
ρ
ε
(,)
(, )
,
MF
MD
MM L
1
1
=⇒

°

pBF
=
||
2
Ë
FB
2
º¯ººÓÈãËÓº°Ò
Ox

°

∠=
αβ
iº}ÈÏÈËã°mº
°jäËËä
rxay rxay
1
22
2
22
=− + =+ +
() ; ()
εε
ºÈÒ©mÈ«}ÈÓºÓÒ
˰}ºË¯ÈmÓËÓÒËÒº¹¯ËËãËÓÒËª}°ËÓ¯Ò°ÒËÈ¹ºãÈËäã«
i
=1,2

.||2
2
))(1()(
)()()(
222
222222222
2222
22
2
2
222
xaxxaa
xxaaaxax
xaax
xa
a
b
axyaxr
i
εεε
εεεε
εε
εε
±=+±=
=+++±=
=+±=
=+±=+±=
sº¹º°}ºã}
ax ||
Ò
01
≤<
ε
º
D[±≥
ε
0
Ò°ã˺mÈËãÓº
rFAa x rFAa x
11 2 2
== ==+
→→
|| ; ||
εε

°
m˯ÎËÓÒË
°
ºËmÒÓºm°Òã
°

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          r‚Ë亭ºÏÓÈȈ ˯ËÏ ρ ( P , Q ) ¯È°°ˆº«ÓÒËäË΂˺äˈ¯Ò˰}ÒäÒº­žË}ˆÈäÒ
PÒ QÈ˯ËÏ α Ò β º­ºÏÓÈÒä‚ã©äË΂}ȰȈËã Óº®ÒÁº}Èã Ó©äÒ¯È҂°ÈäÒ
ºˆ¯ËÏ}ÈäÒ F1 A Ò F2 A 
            
                                           x
 ‘˺¯ËäÈ                ‚°ˆ  A              ˰ˆ  ˆº}È ¹¯ÒÓÈãËÎȝȫ ªããÒ¹°‚ L ÏÈÈÓÓºä‚ }È
 ¯                                 y
                         ÓºÓÒ˰}Ò䂯ÈmÓËÓÒË䈺ÈÒäË ˆä˰ˆº°ãË‚ Ò˰ººˆÓºËÓÒ«
                         
                                                    →                            →
                                       ° r1 =| F1 A|= a − ε x ; r2 =| F2 A |= a + ε x ; 
                                       
                                                →         →
                                       ° | F1 A |+| F2 A | = 2a 
                                       
                                              ρ ( A, F1 ) ρ ( A, F2 )
                                       °              =            = ε 
                                              ρ ( A, D1 ) ρ ( A, D2 )
                                       
                                              ρ ( M , F1 )
                                       °                = ε ⇒ ∀M , M ∈ L 
                                              ρ ( M , D1 )
                                                →                    →
                                       ° | F2 B |= p Ë F2 B º¯ˆººÓÈãËÓº°Ò Ox ° ∠α = ∠β 
            
            
  iº}ÈÏȈËã°ˆmº
   
   
        °jäËËä r1 =             ( x − aε ) 2 + y 2        ; r2 = ( x + aε ) 2 + y 2 ‘ºÈ‚҈©mÈ«}ÈÓºÓÒ
                ˰}ºË‚¯ÈmÓËÓÒËÒº¹¯ËËãËÓÒ˪}°Ëӈ¯Ò°ÒˆËˆÈ¹ºã‚ÈËäã«i=1,2
        
                                                                                             b2
                                           ri = ( x ± aε ) 2 + y 2 = ( x ± aε ) 2 +              2
                                                                                                     (a 2 − x 2 ) =
                                                                                             a
                                           = ( x ± aε ) 2 + (1 − ε 2 )(a 2 − x 2 ) =                                  

                                           = x 2 ± 2 xaε + a 2ε 2 + a 2 − a 2ε 2 − x 2 + x 2ε 2 =
                                           = a 2 ± 2 xaε + x 2ε 2 =| a ± ε x |.
                                                                             
            
                sº¹º°}ºã }‚ | x |≤ a Ò 0 ≤ ε < 1 ˆº D ± ε [ ≥ 0 Ò°ã˺mȈËã Óº
                        →                                  →
                r1 =| F1 A | = a − ε x ; r2 =| F2 A | = a + ε x 
           
           
        °ˆm˯ÎËÓÒ˰ºËmÒÓºm°Òã‚°