Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 298 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
{ÈÓÓºä°ãÈË
∆=− <10
Èºã¹ºmº¯ºÈº°Ë®°Ò°Ëä©}ºº¯ÒÓÈ
α
=
1
2
2arctg

°Ò¹ãÒÓÒÒÙvºm¹ÈÈÒË¹¯«ä©Ëµ
¯ÈmÓËÓÒË
0
2
=
y
º¹¯ËËã«Ë ¹¯«ä
=y 0
m°Ò°ËäË}ºº¯ÒÓÈ
},,{
21
eeO

ºãÈË°«ÒÏÒ¹ÈãÒÓÒÒ
°
¹¯ËËãÓ©ä¹Ë¯Ë²ººä¹¯Ò
0+b

°Ò¹ãÒÓÒÒÙº}Òµ
¯ÈmÓËÓÒË
0
2
2
2
2
=
+
b
y
a
x
º¹¯ËËã«Ë ËÒÓ°mËÓÓº}ÓÈÈãº }ºº¯ÒÓÈ
°Ò°Ëä©
},,{
21
eeO

°Ò¹ãÒÓÒÒÙ°©ËäÓºÎ˰mȵ

¯ÈmÓËÓÒ«
1
2
2
2
2
=
+
b
y
a
x
Ò
22
ay =
ÓË º¹¯ËËã« ÓÈ ¹ãº°}º°Ò
},,{
21
eeO
ÓÒ}È}Ò²ºË}|ÓÈ}ºªÒ°ãÈÒÒÓºÈÒäËÓÙutquuqsqtq¹uqµ
¯wããÒ¹°Ò˺°mº®°mÈ
|¹¯ËËãËÓÒË
¯
z¯ÒmÈ« ¯ÈmÓËÓÒË }ºº¯º® m ÓË}ºº¯º® º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË
}ºº¯ÒÓÈÒäËËmÒ
0;1
2
2
2
2
>=+ ba
b
y
a
x
ÓÈÏ©mÈË°«ëssqwxvu
|¹¯ËËãËÓÒË
¯
Ò°ãº
a
ba
22
=
ε
ÓÈÏ©mÈË°«ërx|ntzéqxqznzvuªããÒ¹°È
º}Ò
0
a
ε
±
ÓÈÏ©mÈ°«{vryxjuqªããÒ¹°È
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                                                                  1
        {ÈÓÓºä°ã‚ÈË ∆ = −1 < 0 È‚ºã¹ºmº¯ºˆÈº°Ë®°Ò°ˆËä©}ºº¯ÒÓȈ α =                                                   arctg 2 
                                                                                                                                  2
            
            
            
°‘Ò¹ãÒÓÒÒÙvºm¹ÈÈ Ò˹¯«ä©Ëµ
            
            
                                                                                                                                       → →
         ¯ÈmÓËÓÒË y ′ 2 = 0  º¹¯ËËã«Ëˆ ¹¯«ä‚  y ′ = 0  m °Ò°ˆËäË }ºº¯ÒÓȈ {O ′, e1′ , e ′2 } 
ºã‚Èˈ°«ÒψҹÈãÒÓÒÒ°¹¯ËËã Ó©ä¹Ë¯Ë²ººä¹¯Ò b → +0 
         
         
         
°‘Ò¹ãÒÓÒÒّº}Òµ
         
         
                                 x′2        y′2
            ¯ÈmÓËÓÒË                 +          = 0  º¹¯ËËã«Ëˆ ËÒÓ°ˆmËÓӂ  ˆº}‚  ÓÈÈ㺠}ºº¯ÒÓȈ
                                 a2         b2
                     → →
°Ò°ˆËä© {O ′, e1′ , e ′2 } 
       
       
       
°‘Ò¹ãÒÓÒÒف‚°ˆ©ËäÓºÎ˰ˆmȵ 
            
            
                                 x′2        y′2                                                                                         → →
            ¯ÈmÓËÓÒ«                 +          = −1  Ò y ′2 = −a 2  ÓË º¹¯ËËã« ˆ ÓÈ ¹ãº°}º°ˆÒ {O ′, e1′ , e′2 } 
                                 a2         b2
ÓÒ}È}Ò²ˆºË}|ÓÈ}ºªˆÒ°ã‚ÈÒÒÓºÈÒäËӂ ˆÙutqu€uqsqtq¹uqµ
       
       
       
       
¯wããÒ¹°Ò˺°mº®°ˆmÈ
            
            
            
 |¹¯ËËãËÓÒË            z¯ÒmÈ« ‚¯ÈmÓËÓÒË }ºˆº¯º® m ÓË}ºˆº¯º® º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË
 ¯
                                                             x2       y2
                         }ºº¯ÒÓȈÒäËˈmÒ                     +        = 1 ; a ≥ b > 0 ÓÈÏ©mÈˈ°«ëssqwxvu
                                                             a2       b2
            
 |¹¯ËËãËÓÒË
 ¯                                   a2 − b2
                             Ұ㺠ε =                ÓÈÏ©mÈˈ°«ërx|ntzéqxqznzvuªããÒ¹°È
                                                a
                         
                                       ± εa
                         ‘º}Ò                  ÓÈÏ©mÈ ˆ°«{vryxjuqªããÒ¹°È
                                        0