Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 302 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
iº}ÈÏÈËã°mº°˺¯Ëä©¯
°}ȰÈËãÓÈ«}ªããÒ¹°¹¯ºmËËÓÈ˯ËÏº}}ȰÈÓÒ«
A
ÒäË}ºº¯
ÒÓÈ©
x
y
0
0
 º È¯È°°º«ÓÒË
2
d
ºÁº}°È
2
F
°}ºº¯ÒÓÈÈäÒ
0
c
º}ȰÈ
ËãÓº®¯ÈmÓº°äÏÈÈ
a
r
ax
a
a
cx
b
y
a
cx
d
=+
=+
=+
=
2
0
2
0
2
0
2
0
2
1
1
1
1
)0()(
1
ε

Ë
2
2
0
2
2
0
b
y
a
x
+=

kÓÈãºÒÓºÓȲºÒä¯È°°º«ÓÒË
d
1
ºÁº}°È
F
1
°}ºº¯ÒÓÈÈäÒ
c
0
º}ȰÈ
ËãÓº®
.
1
1
1
1
0
2
0
1
a
r
ax
a
a
cx
d
=
=
=
ε
º°}ºã}ã©
α
Ò
β
º°¯©ËºÒÏ¯ÈmËÓ°m
ar
d
==
1
sin
1
1
α
Ò
sin
β
==
d
ra
2
2
1
°ãËË
βα
=

vmº®°mº
°
˺¯Ëä©¯º}ÈÏÈÓº
jÏ˺¯Ëä¯Ò¯°ãËËmºÏäºÎÓº°Èã˯ÓÈÒmÓ©²Áº¯äãÒ
¯ºmº}°mº®°mªããÒ¹°È
Ðvrjstvn xkvpxzkv ëssqwxj ªããÒ¹° ˰ ˺äË¯Ò˰}ºË ä˰º ºË} °ääÈ
¯È°°º«ÓÒ®º}ºº¯©²ºm²Áº}°ºm¹º°º«ÓÓÈÒ¯ÈmÓÈ
2a

bqénrzvéqjstvnxkvpxzkvëssqwxjªããÒ¹° Ò°}ãÈ«°ãÈ®º}¯ÎÓº°Ò ˰
˺äË¯Ò˰}ºË ä˰º ºË} ºÓºËÓÒË ¯È°°º«ÓÒ« º }ºº¯©² º
ÈÓÓº®º}ÒÁº}°È}¯È°°º«ÓÒºÈÓÓº®¹¯«äº®Ò¯Ë}¯Ò
°©¹º°º«ÓÓºÒäËÓËËÒÓÒ©
Ìwzq·nxrvn xkvpxzkv ëssqwxj }ȰÈËãÓÈ« m ãº® º}Ë ªããÒ¹°È º¯ÈÏË °
Áº}ÈãÓ©äÒ¯ÈÒ°ÈäÒº}Ò}ȰÈÓÒ«¯ÈmÓ©Ëº°¯©Ëã©º®
ã°mËÈÒ°²º«Ò®ÒÏºÓººÁº}°È¹º°ãËº¯ÈÎËÓÒ«mªããÒ¹°Ë
¹¯º²ºÒ˯ËÏ¯º®Áº}°
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº°ˆËº¯Ë䩁¯ 
    
    
         ‚°ˆ }ȰȈËã ÓÈ«}ªããÒ¹°‚¹¯ºmËËÓÈ˯Ëψº}‚}ȰÈÓÒ«AÒäË ‚ }ºº¯
                         x0                                                         −c
          ÒÓȈ©           ‘ºÈ¯È°°ˆº«ÓÒË d 2 ºˆÁº}‚°È F2 °}ºº¯ÒÓȈÈäÒ    º}ȰÈ
                         y0                                                          0
          ˆËã Óº®¯ÈmÓº °äÏÈÈ‚ 
          
                                         1 x 0 ( − c ) y 0 (0) 1 x0 c      1            r
                                 d2 =                 + 2 −1 =        +1 =    x0ε + a = 2 
                                         ∆ a     2
                                                         b     ∆ a 2       ∆a          ∆a
          
                                           x02       y02
                           Ë ∆ =              +         
                                           a2        b2
          
                                                                                                                           c
          kÓÈãºÒÓºÓȲºÒä¯È°°ˆº«ÓÒË d 1 ºˆÁº}‚°È F1 °}ºº¯ÒÓȈÈäÒ                                                   º}ȰÈ
                                                                                                                           0
          ˆËã Óº®
                                                                1 x0 c      1             r
                                                     d1 =              −1 =    x 0ε − a = 1 . 
                                                                ∆ a 2       ∆a           ∆a
          
                                                                  d    1             d2   1
          º°}ºã }‚‚ã© α Ò β º°ˆ¯©ËˆºÒϯÈmËÓ°ˆm sin α = 1 =   Ò sin β =    =   
                                                                                                     r1     ∆a                    r2      ∆a
          °ãË‚ˈ ∠α = ∠β 
     
     
     vmº®°ˆmº°ˆËº¯Ë䩁¯º}ÈÏÈÓº
       
       
       
       jψ˺¯Ë䁯ҁ¯°ãË‚ˈmºÏäºÎÓº°ˆ È㠈˯ÓȈÒmÓ©²Áº¯ä‚ãÒ
¯ºmº}°mº®°ˆmªããÒ¹°È
       
       
       Ðvrjstvn xkvpxzkv ëssqwxj ªããÒ¹° ˰ˆ  ˺äˈ¯Ò˰}ºË ä˰ˆº ˆºË} °‚ääÈ
                  ¯È°°ˆº«ÓÒ®ºˆ}ºˆº¯©²ºm‚²Áº}‚°ºm¹º°ˆº«ÓÓÈÒ¯ÈmÓÈ 2a 
       
       
       bqénrzvéqjstvn xkvpxzkv ëssqwxj ªããÒ¹° Ò°}ã È« °ã‚È® º}¯‚ÎÓº°ˆÒ  ˰ˆ 
                  ˺äˈ¯Ò˰}ºË ä˰ˆº ˆºË} ºˆÓº ËÓÒË ¯È°°ˆº«ÓÒ« ºˆ }ºˆº¯©² º
                  ÈÓÓº®ˆº}Ò Áº}‚°È }¯È°°ˆº«ÓÒ ºÈÓÓº®¹¯«äº® Ò¯Ë}ˆ¯Ò
                  °© ¹º°ˆº«ÓÓºÒäËÓ ËËÒÓÒ©
       
       Ìwzq·nxrvn xkvpxzkv ëssqwxj }ȰȈËã ÓÈ« m ã ­º® ˆº}Ë ªããÒ¹°È º­¯Èςˈ °
                  Áº}Èã Ó©äÒ¯È҂°ÈäÒˆº}Ò}ȰÈÓÒ«¯Èmө˺°ˆ¯©Ë‚ã©  ­º®
                  ã‚°mˈÈÒ°²º«Ò®ÒϺӺºÁº}‚°È¹º°ã˺ˆ¯ÈÎËÓÒ«mªããÒ¹°Ë
                  ¹¯º²º҈˯Ëϯ‚º®Áº}‚°