Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 304 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
&mº®°mÈҹ˯ºã©
°ҹ˯ºãÈ  Ó˺¯ÈÓÒËÓÓÈ« }¯ÒmÈ« °˰mÈ« ã«
||
xa
 º
°ãËËÒÏÏȹҰÒ}ÈÓºÓÒ˰}ºº¯ÈmÓËÓÒ«mÁº¯äË
22
ax
a
b
y ±=

°
ҹ˯ºãÈ
L
ºãÈÈËº°Ëmº®°ÒääË¯ÒË®ºÓº°ÒËãÓºº°Ë®
Ox
Ò
Oy
È
È}ÎË ËÓ¯ÈãÓº® °ÒääË¯ÒË® ºÓº°ÒËãÓº ÓÈÈãÈ }ºº¯ÒÓÈ wº
m©Ë}ÈËÒÏºÓºËÓÒ®
,L
y
x
L
y
x
L
y
x
L
y
x

ºËmÒÓ©²ã«}ÈÓºÓÒ˰}ºº¯ÈmÓËÓÒ«ҹ˯ºã©
˯ËÏ
α
Ò
β
ººÏÓÈÒä ã© äËÎ }ȰÈËãÓº® Ò Áº}ÈãÓ©äÒ ¯ÈÒ°ÈäÒ
¯Ò°¯
|¹¯ËËãËÓÒË
¯
¯«äÈ«
vxuy +=
ÓÈÏ©mÈË°« jxquwzvzvp ã« ãÒÓÒÒ
)(
xfy =
¹¯Ò
x
˰ãÒ
x
xf
u
x
)(
lim
=

Ò
))((lim xuxfv
x
=

°
 ҹ˯ºãÈºãÈÈËȰÒä¹ºÈäÒmÒÈ
\
E
D
[

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



&mº®°ˆmÈҹ˯­ºã©
            
            
            
                     °€Ò¹Ë¯­ºãÈ  Ó˺¯ÈÓÒËÓÓÈ« }¯ÒmÈ« °‚Ë°ˆm‚ È« ã« | x | ≥ a  ˆº
                                                                                                                             b 2
                             °ãË‚ˈÒÏÏȹҰÒ}ÈÓºÓÒ˰}ºº‚¯ÈmÓËÓÒ«mÁº¯äË y = ±                                          x − a 2 
                                                                                                                             a
                     
                     
                     °€Ò¹Ë¯­ºãÈLº­ãÈÈˈº°Ëmº®°Òääˈ¯ÒË®ºˆÓº°ÒˆËã Óºº°Ë®OxÒOyÈ
                          ˆÈ}ÎË Ëӈ¯Èã Óº® °Òääˈ¯ÒË® ºˆÓº°ÒˆËã Óº ÓÈÈãÈ }ºº¯ÒÓȈ wˆº
                          m©ˆË}ÈˈÒϺˆÓº ËÓÒ®
                     
                                                         −x                      x                        x
                                                            ∈L         ⇔             ∈L       ⇔               ∈L
                                                          y                      y                     −y
                                                                                                                  
                                                                                −x
                                                                                   ∈ L,
                                                                                −y
                                                        
                                                        
                  ºËmÒÓ©²ã«}ÈÓºÓÒ˰}ºº‚¯ÈmÓËÓÒ«ҹ˯­ºã©
                  
                  
                  
            ˯ËÏ α  Ò β  º­ºÏÓÈÒä ‚ã© äË΂ }ȰȈËã Óº® Ò Áº}Èã Ó©äÒ ¯È҂°ÈäÒ
 ¯Ò°¯ 
                  
                  
                  
 |¹¯ËËãËÓÒË     ¯«äÈ« y = u x + v  ÓÈÏ©mÈˈ°« jxquwzvzvp ã« ãÒÓÒÒ y = f (x )  ¹¯Ò
 ¯
                   x → ∞ ˰ãÒ
                                                                 f (x)
                                                   u = lim             
                                                         x →∞      x
                                                   
                                                   Ò
                                                   
                                                   v = lim ( f ( x ) − u x ) 
                                                         x →∞
                                                   
                         
                         
                         
                                                                                                         E
                     °      €Ò¹Ë¯­ºãȺ­ãÈÈˈȰÒ么ºˆÈäÒmÒÈ \ = ±                                 [ 
                                                                                                         D