Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 305 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
vmº®°mÈ ҹ˯ºã©
Òãã°¯Ò¯°«
¯Ò°¯

A

r
2

β

α

r
1
)
D
D
E
E
\
[
)
2
'
'
%
èqxytvr¯
iË®°mÒËãÓº
a
b
ax
ax
b
u
x
±==
±∞
22
lim
Ò}¯ºäËºº
.0
1
lim
)(
lim
)(limlim
2222
222
2222
)(
=
=
±
=
===
±∞±∞
±∞±∞
xax
ab
xax
xax
a
b
xax
a
b
x
a
b
ax
a
b
v
xx
xx
#
##
˺¯ËäÈ
¯
°
$
x
y
˰º}È¹¯ÒÓÈãËÎÈÈ«ҹ˯ºãË
/
ÏÈÈÓÓº®}È
ÓºÓÒ˰}Òä¯ÈmÓËÓÒËäºÈÒäËä˰º°ãËÒË°ººÓºËÓÒ«
°
iã«¹¯Èmº®mËmÒ
rFA a x rFAa x xa
11 2 2
==+ = =+ >
→→
|| ; | | ;( )
εε

iã«ãËmº®mËmÒ
rFAa x rFA a x x a
11 2 2
== == <
→→
|| ; || ;( );
εε
°

||;
rr a
12
2
−=

°

ρ
ρ
ρ
ρ
ε
(, )
(, )
()
(, )
;
AF
AD
AF
AD
1
1
2
2
==
¯ÒãºÎËÓÒË
vmº®°ˆmÈãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ



    vmº®°ˆmÈ ҹ˯­ºã©                                                                      \
    Òãã °ˆ¯Ò¯‚ ˆ°«                                       %
                                                                              '                  '
    ¯Ò°¯
    

                                                                                          E
                                                        A

                                                        r2 βα r1                                     [
                                                                                         2
                                                             )         D                                D           )


                                                                                         E

                                                                                                                                            
                                           
                                           
                                           
                                           èqxytvr¯
                          
                                
                                                                         b               b
                                iË®°ˆm҈Ëã Óº u = lim                     x 2 − a 2 = ± Ò}¯ºäˈºº
                                                                  x → ±∞ ax              a
                                                                                    
                                                                                    
                                                  b 2       b                             b
                                v = lim (           x − a2 # x )                    =         lim ( x 2 − a 2 # x )            =
                                         x → ±∞   a         a                             a x → ±∞
                                                                                                                                        
                                      b       ( x 2 − a2 ) − x 2                                                  1
                                    =     lim                                =          − ab lim                           =       0.
                                      a x → ±∞ x 2 − a 2 ± x                                  x → ±∞
                                                                                                          x −a # x
                                                                                                              2       2

             
             
             
                                            x
    ‘˺¯ËäÈ             ‚°ˆ  $                 ˰ˆ ˆº}ȹ¯ÒÓÈãËÎȝȫҹ˯­ºãË /ÏÈÈÓÓº®}È
    ¯                               y
                         ÓºÓÒ˰}Ò䂯ÈmÓËÓÒË䈺ÈÒäË ˆä˰ˆº°ãË‚ Ò˰ººˆÓºËÓÒ«
                               
                               
                               °i㫹¯Èmº®mˈmÒ
                                                         →                                            →
                                                  r1 =| F1 A | = − a + ε x ; r2 =| F2 A | = a + ε x ; ( x > a ) 
                                                                                                  
                                             iã«ãËmº®mˈmÒ
                                                           →                                          →
                                                  r1 =| F1 A | = a − ε x ; r2 =| F2 A | = − a − ε x ; ( x < −a ) ; 
                                     
                                     
                                                                                                       ρ ( A, F1 )   ρ ( AF2 )
                                     °          | r1 − r2 | = 2a         ;             °                 =           =ε               ;
                                                                                                       ρ ( A, D1 ) ρ ( A, D2 )