Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 306 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°

ρ
ρ
ε
(,)
(, )
,;
MF
MD
MM L
1
1
=⇒

°

|| ;FB p
2
=
°

∠=
αβ
iº}ÈÏÈËã°mº
°iº}ÈÏÈËã°mºÈÓÈãºÒÓºº}ÈÏÈËã°m˺¯Ëä©¯¹ ºªºäº¯È
ÓÒÒä°«Ï˰ãÒÓȲºÎËÓÒËämËãÒÒÓ
22
2
22
1
)(;)( yaxryaxr
++=+=
εε

Ò°¹ºãÏ«}ÈÓºÓÒ˰}ºË¯ÈmÓËÓÒËÒº¹¯ËËãËÓÒËª}°ËÓ¯Ò°ÒËÈ
iã«
2,1
=
i
¹ºãÈËä

=+±=
=+±=+±=
))(1()(
)()()(
2222
22
2
2
222
xaax
xa
a
b
axyaxr
i
εε
εε

.||2
2
222
222222222
xaxxaa
xxaaaxax
εεε
εεεε
±=+±=
=+++±=
sº ¹º°}ºã} ã« ҹ˯ºã©
||
xa
Ò
ε
> 1
 º ã« ¹¯Èmº® mË
rFA a x rFAa x
11 2 2
==+ ==+
→→
|| ; ||
εε

È ã« ãËmº®  °ººmË°mËÓÓº
rFAa x rFA a x
11 2 2
== ==
→→
|| ; ||
εε

|}ÈÒ°ãËË
°
Ò
°

v¹¯ÈmËãÒmº°
°
º}ÈÎÒË°È亰º«ËãÓº
°
sÈ}ºÓË
||FB
b
a
aa
b
a
ab
b
a
p
2
22 2 2
1
=−===
εε

°
iº}ÈÎÒË ªº m˯ÎËÓÒË °È亰º«ËãÓº ¹º ÈÓÈãºÒÒ ° º}ÈÏÈËã°mºä
°mº®°mÈ
°
˺¯Ëä©¯Ò°¹ºãÏ«È}ÎË˺¯Ëä¯
˺¯ËäÈº}ÈÏÈÓÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                    ρ ( M , F1 )                                   →
                                     °                       = ε ⇒ ∀M , M ∈ L ; ° | F2 B | = p ; 
                                                    ρ ( M , D1 )
                                     
                                     ° ∠α = ∠β 
              
              
  iº}ÈÏȈËã°ˆmº
   
   
      °iº}ÈÏȈËã °ˆmºÈÓÈãºÒÓºº}ÈÏȈËã °ˆm‚ˆËº¯Ë䩁¯¹ºªˆºä‚º¯È
         ÓÒÒä°«Ï˰ ãÒ ÓȲºÎËÓÒËämËãÒÒÓ
          


                                             r1 = ( x − aε ) 2 + y 2 ; r2 = ( x + aε ) 2 + y 2 
          

                  Ò°¹ºã ς«}ÈÓºÓÒ˰}ºË‚¯ÈmÓËÓÒËÒº¹¯ËËãËÓÒ˪}°Ëӈ¯Ò°ÒˆËˆÈ
          
                   iã« i = 1,2 ¹ºã‚ÈËä
                   
                                                                                                  b2
                                             ri = ( x ± aε ) 2 + y 2 = ( x ± aε ) 2 +                 2
                                                                                                          (a 2 − x 2 ) =
                                                                     a                        

                                                = ( x ± aε ) 2 + (1 − ε 2 )(a 2 − x 2 ) =
          
                                                = x 2 ± 2 xaε + a 2ε 2 + a 2 − a 2ε 2 − x 2 + x 2ε 2 =
                                                                                                             
                                                = a ± 2 xaε + x ε =| a ± ε x | .
                                                       2                 2 2

          
          
                   sº ¹º°}ºã }‚ ã« ҹ˯­ºã© | x | ≥ a  Ò ε > 1  ˆº ã« ¹¯Èmº® mˈ
                               →                                   →
                   mÒ r1 =| F1 A | = − a + ε x        ; r2 =| F2 A | = a + ε x  È ã« ãËmº®  °ººˆmˈ°ˆmËÓÓº
                           →                                 →
                    r1 =| F1 A | = a − ε x ; r2 =| F2 A | = − a − ε x |ˆ}‚ÈÒ°ãË‚ˈ°Ò°
          
          
          v¹¯ÈmËãÒmº°ˆ °º}ÈÎ҈˰È亰ˆº«ˆËã Óº
          
          
                                     →       b                b             b
          °sÈ}ºÓË | F2 B| =             a 2 ε 2 − a 2 = a ε 2 − 1 = b = p 
                                             a                a             a
          
          °iº}ÈÎ҈Ë ªˆº ‚ˆm˯ÎËÓÒË °È亰ˆº«ˆËã Óº ¹º ÈÓÈãºÒÒ ° º}ÈÏȈËã °ˆmºä
               °mº®°ˆmȰˆËº¯Ë䩁¯Ò°¹ºã ς«ˆÈ}Îˈ˺¯Ë䂁¯
     
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ