Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 307 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
~ÈäËÈÓÒËº°mº®°mȲҹ˯ºã©
zÈÓºÓÒ˰}ºË¯ÈmÓËÓÒËÒÏÈË亮m}¯°ËªãËäËÓȯӺ®äÈËäÈÒ}Òҹ˯ºã©
y
a
x
=
¹ºãÈË°«¹Ëä°ãËË®ÏÈäËÓ©}ºº¯ÒÓÈ
+
=
=
yxy
yxx
2
1
2
1
2
1
2
1

jÏ˺¯Ëä¯Ò¯°ãË ËmºÏäºÎÓº°Èã˯ÓÈÒmÓ©²Áº¯äãÒ
¯ºmº}°mº®°mҹ˯ºã©
Ðvrjstvn xkvpxzkv mqwnéivs ҹ˯ºãÈ ˰ ˺äË¯Ò˰}ºË ä˰º ºË}
È°ºãÓÈ«mËãÒÒÓÈ¯ÈÏÓº°Ò¯È°°º«ÓÒ®º}ºº¯©²ºm²Áº
}°ºm¹º°º«ÓÓÈÒ¯ÈmÓÈ
2a

bqénrzvéqjstvn xkvpxzkv mqwnéivs ҹ˯ºãÈ ˰ ˺äË¯Ò˰}ºË ä˰º
ºË}ºÓºËÓÒË¯È°°º«ÓÒ«º}ºº¯©²ºÈÓÓº®º}ÒÁº}°È
} ¯È°°º«ÓÒ º ÈÓÓº® ¹¯«äº® Ò¯Ë}¯Ò°© ¹º°º«ÓÓº Ò ºãË
ËÒÓÒ©
Ìwzq·nxrvn xkvpxzkv mqwnéivs }ȰÈËãÓÈ« m ãº® º}Ë ҹ˯ºã©
º¯ÈÏË ° Áº}ÈãÓ©äÒ ¯ÈÒ°ÈäÒ º}Ò }ȰÈÓÒ« ¯ÈmÓ©Ë ã©
jϺ¯ÈÎËÓÒË  ºËÓºº Ò°ºÓÒ}È °mËÈ ¯È°¹ºãºÎËÓÓºº m ºÓºä
ÒÏÁº}°ºm˰äÓÒäºËÒÓȲºÒ°«m¯ºäÁº}°Ëҹ˯ºã©
¯ºmËËÓÒË}ȰÈËã Ó©²}ҹ˯ºãË
˺¯ËäÈ
¯
°
$
x
y
0
0
˰º}È ¹¯ÒÓÈãËÎÈÈ« ҹ˯ºãË ÏÈÈÓÓº® }È
ÓºÓÒ˰}Òä¯ÈmÓËÓÒËäºÈ¯ÈmÓËÓÒË}ȰÈËãÓº®}ªº®ҹ˯
ºãË¹¯º²º«Ë®˯ËÏº}kÒäËËmÒ
1
2
0
2
0
=
b
yy
a
xx
¯ÒãºÎËÓÒË
vmº®°ˆmÈãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ



~ÈäËÈÓÒ˺°mº®°ˆmȲҹ˯­ºã©
           
           
           
         zÈÓºÓÒ˰}ºË‚¯ÈmÓËÓÒËÒςÈË亮m}‚¯°ËªãËäËӈȯӺ®äȈËäȈÒ}Òҹ˯­ºã©
                 a
         y=        ¹ºã‚Èˈ°«¹‚ˆËä°ãË‚ Ë®ÏÈäËÓ©}ºº¯ÒÓȈ
                 x
         
                                                                     1                 1
                                                                x = 2 x ′ −              y′
                                                                                         2 
                                                                     1                 1
                                                                y =     x′ +              y′
                                                                     2                 2
       
       
       
       
       jψ˺¯Ë䁯ҁ¯°ãË‚ˈmºÏäºÎÓº°ˆ È㠈˯ÓȈÒmÓ©²Áº¯ä‚ãÒ
¯ºmº}°mº®°ˆmҹ˯­ºã©
       
       
       Ðvrjstvn xkvpxzkv mqwnéivs€ ҹ˯­ºãÈ ˰ˆ  ˺äˈ¯Ò˰}ºË ä˰ˆº ˆºË}
                  È­°ºã ˆÓÈ«mËãÒÒÓȯÈÏÓº°ˆÒ¯È°°ˆº«ÓÒ®ºˆ}ºˆº¯©²ºm‚²Áº
                  }‚°ºm¹º°ˆº«ÓÓÈÒ¯ÈmÓÈ 2a 
       
       bqénrzvéqjstvn xkvpxzkv mqwnéivs€ ҹ˯­ºãÈ ˰ˆ  ˺äˈ¯Ò˰}ºË ä˰ˆº
                  ˆºË} ºˆÓº ËÓÒË ¯È°°ˆº«ÓÒ« ºˆ }ºˆº¯©² º ÈÓÓº® ˆº}Ò Áº}‚°È 
                  } ¯È°°ˆº«ÓÒ  º ÈÓÓº® ¹¯«äº® Ò¯Ë}ˆ¯Ò°©  ¹º°ˆº«ÓÓº Ò ­ºã Ë
                  ËÒÓÒ©
       
       Ìwzq·nxrvn xkvpxzkv mqwnéivs€ }ȰȈËã ÓÈ« m ã ­º® ˆº}Ë ҹ˯­ºã©
                  º­¯Èςˈ ° Áº}Èã Ó©äÒ ¯È҂°ÈäÒ ˆº}Ò }ȰÈÓÒ« ¯ÈmÓ©Ë ‚ã©
                   jϺ­¯ÈÎËÓÒË ˆºËÓºº Ò°ˆºÓÒ}È °mˈÈ ¯È°¹ºãºÎËÓÓºº m ºÓºä
                  ÒÏÁº}‚°ºm˰ˆ äÓÒäºËÒÓȲº҈°«m¯‚ºäÁº}‚°Ëҹ˯­ºã© 
       
       
       
       
¯ºmËËÓÒË}ȰȈËãÓ©²}ҹ˯­ºãË
             
             
             
                                            x0
    ‘˺¯ËäÈ             ‚°ˆ  $                ˰ˆ  ˆº}È ¹¯ÒÓÈãËÎȝȫ ҹ˯­ºãË ÏÈÈÓÓº® }È
    ¯                               y0
                         ÓºÓÒ˰}Ò䂯ÈmÓËÓÒË䈺Ȃ¯ÈmÓËÓÒË}ȰȈËã Óº®}ªˆº®ҹ˯
                         ­ºã˹¯º²º«Ë®˯Ëψº}‚kÒäËˈmÒ
                                                                           x0 x         y0 y
                                                                                2
                                                                                    −          = 1 
                                                                            a           b2