Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 309 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
|¹¯ËËãËÓÒË
¯
º}È
p
2
0
ÓÈÏ©mÈË°«{vryxvu¹È¯Èºã©
¯«äÈ«
x
p
=−
2
ÓÈÏ©mÈË°«lqénrzéqxvp¹È¯Èºã©
Ò°ãº
S
ÓÈÏ©mÈË°«{vrjstuwjéjunzévu¹È¯Èºã©
vmº®°mÈ¹È¯Èºã©Òãã°¯Ò¯°«¯Ò°¯
˯ËÏ
α
ººÏÓÈÒä ºã äËÎ }ȰÈËãÓº® Ò Áº}ÈãÓ©ä ¯ÈÒ°ºä ¯Ò°
¯È˯ËÏ
β
ºãäËÎ}ȰÈËãÓº®Ò¹ºãºÎÒËãÓ©äÓȹ¯ÈmãËÓÒËäº°ÒÈ°
Ò°°
\
%
'$


α



β
2[
)

p
2
0

x
p
=−
2
èqxytvr¯
vmº®°mÈ¹È¯Èºã©
°
ȯÈºãÈÓ˺¯ÈÓÒËÓÓÈ«}¯ÒmÈ«°˰mÈ«ã«
∀≥
x 0

¯ÒãºÎËÓÒË
vmº®°ˆmÈãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ



    |¹¯ËËãËÓÒË
    ¯
                                p
                         ‘º}È 2 ÓÈÏ©mÈˈ°«{vryxvu¹È¯È­ºã©
                                0
                         
                                                p
                         ¯«äÈ« x = −            ÓÈÏ©mÈˈ°«lqénrzéqxvp¹È¯È­ºã©
                                                2
                         
                             Ò°ãºSÓÈÏ©mÈˈ°«{vrjst€uwjéjunzévu¹È¯È­ºã©
                         
        
        
vmº®°ˆmȹȯȭºã©Òãã °ˆ¯Ò¯‚ ˆ°«¯Ò°¯
        
        
        
           ˯ËÏ α  º­ºÏÓÈÒä ‚ºã äË΂ }ȰȈËã Óº® Ò Áº}Èã Ó©ä ¯È҂°ºä ¯Ò°
¯ È˯ËÏ β ‚ºãäË΂}ȰȈËã Óº®Ò¹ºãºÎ҈Ëã Ó©äÓȹ¯ÈmãËÓÒË亰ÒÈ­°
Ò°°
        
        
        
        
        
             \
             %
             '$
             
             α
             
             
             

             β2[
             )
                                                                            p
              2 
                                                                                              0
             
                                          p
              x = −        
                                          2
             
                                                                  èqxytvr¯
             
             
             
vmº®°ˆmȹȯȭºã©
           
           
        °È¯È­ºãÈÓ˺¯ÈÓÒËÓÓÈ«}¯ÒmÈ«°‚Ë°ˆm‚ È«ã« ∀x ≥ 0