Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 311 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
~ÈäËÈÓÒËº°mº®°mȲ¹È¯Èºã©
zÈÓºÓÒ˰}ºË¯ÈmÓËÓÒËÒÏÈË亮m}¯°ËªãËäËÓȯӺ®äÈËäÈÒ}Ò¹È¯Èºã©
È
yax
=
2
¹ºãÈË°«¹ËämÏÈÒäÓºº¹Ë¯ËÒäËÓºmÈÓÒ«}ºº¯ÒÓÈÓ©²¹Ë¯Ë
äËÓÓ©²
jÏ ˺¯Ëä© ¯ °ãËË mºÏäºÎÓº°Èã˯ÓÈÒmÓ©² Áº¯äãÒ¯ºmº}
°mº®°m¹È¯Èºã©
bqénrzvéqjstvnxkvpxzkvwjéjivs ¹È¯ÈºãÈ˰˺äË¯Ò˰}ºËä˰ºº
Ë} ºÓºËÓÒË ¯È°°º«ÓÒ«º }ºº¯©²º ÈÓÓº® º}Ò Áº}°È}
¯È°°º«ÓÒ º ÈÓÓº® ¹¯«äº® Ò¯Ë}¯Ò°© ¹º°º«ÓÓº Ò ¯ÈmÓº
ËÒÓÒË
Ìwzq·nxrvnxkvpxzkvwjéjivs}ȰÈËãÓÈ«mãº®º}Ëҹ˯ºã©º¯ÈÏË
¯ÈmÓ©Ëã©°Áº}ÈãÓ©ä¯ÈÒ°ºä º}Ò }ȰÈÓÒ« Ò ¹ºãºÎÒËã
Ó©ä Óȹ¯ÈmãËÓÒËä º°Ò È°Ò°° zÈΩ® ã °mËÈ m©²º«Ò® ÒÏ
Áº}°È ¹È¯Èºã© ¹º°ãË º¯ÈÎËÓÒ« º ¹È¯Èºã© ¯È°¹¯º°¯ÈÓ«Ë°«
¹È¯ÈããËãÓºËËº°Ò
¯ºmËËÓÒË}ȰÈËã Ó©²}¹È¯ÈºãË
˺¯ËäÈ
¯
°
$
x
y
0
0
˰º}È¹¯ÒÓÈãËÎÈÈ«¹È¯ÈºãËÏÈÈÓÓº®}ÈÓº
ÓÒ˰}Òä¯ÈmÓËÓÒËäºÈ¯ÈmÓËÓÒË}ȰÈËãÓº®}ªº®¹È¯ÈºãË
¹¯º²º«Ë®˯ËÏº}
b
ÒäËËmÒ
)(
00
xxpyy +=
iº}ÈÏÈËã°mº
¯ÈmÓËÓÒË}ȰÈËã Óº®mº}Ë
$
ÒäËË
))((
000
xxxyyy
=
iã«¹È¯Èº
ã©ÒÏ}ÈÓºÓÒ˰}ºº¯ÈmÓËÓÒ«¹ºãÈËä
pyy
22
=
 º˰
0
0
)(
y
p
xy =

0
0
y

sº ºÈ
)(
0
0
0
xx
y
p
yy =
 ¹¯ÒÓÒäÈ« mº mÓÒäÈÓÒË º
0
2
0
2pxy
=
 º}ºÓÈ
ËãÓº¹ºãÒä
)(
00
xxpyy +=

sÈ}ºÓË Ó˹º°¯Ë°mËÓÓº ¹¯ºm˯«Ëä m˯ÎËÓÒË ˺¯Ëä© ã« º}Ò
y
0
0
=

Ë¯ÈmÓËÓÒË}ȰÈËãÓº®
x = 0

˺¯ËäÈº}ÈÏÈÓÈ
¯ÒãºÎËÓÒË
vmº®°ˆmÈãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ



~ÈäËÈÓÒ˺°mº®°ˆmȲ¹È¯È­ºã©
       
       
      zÈÓºÓÒ˰}ºË‚¯ÈmÓËÓÒËÒςÈË亮m}‚¯°ËªãËäËӈȯӺ®äȈËäȈÒ}ҹȯȭºã©
      mÒÈ y = ax 2 ¹ºã‚Èˈ°«¹‚ˆËämÏÈÒäÓºº¹Ë¯ËÒäËÓºmÈÓÒ«}ºº¯ÒÓȈө²¹Ë¯Ë
      äËÓÓ©²
       
       
       jÏ ˆËº¯Ëä© ¯ °ãË‚ˈ mºÏäºÎÓº°ˆ  È㠈˯ÓȈÒmÓ©² Áº¯ä‚ãÒ¯ºmº}
°mº®°ˆm¹È¯È­ºã©
       
             

             bqénrzvéqjstvn xkvpxzkv wjéjivs€ ¹È¯È­ºãÈ ˰ˆ  ˺äˈ¯Ò˰}ºË ä˰ˆº ˆº
                       Ë} ºˆÓº ËÓÒË ¯È°°ˆº«ÓÒ« ºˆ }ºˆº¯©² º ÈÓÓº® ˆº}Ò Áº}‚°È  }
                       ¯È°°ˆº«ÓÒ  º ÈÓÓº® ¹¯«äº® Ò¯Ë}ˆ¯Ò°©  ¹º°ˆº«ÓÓº Ò ¯ÈmÓº
                       ËÒÓÒË
             
             Ìwzq·nxrvnxkvpxzkvwjéjivs€}ȰȈËã ÓÈ«mã ­º®ˆº}Ëҹ˯­ºã©º­¯Èςˈ
                       ¯ÈmÓ©Ë ‚ã© ° Áº}Èã Ó©ä ¯È҂°ºä ˆº}Ò }ȰÈÓÒ« Ò ¹ºãºÎ҈Ëã 
                       Ó©ä Óȹ¯ÈmãËÓÒËä º°Ò È­°Ò°° zÈΩ® ã‚ °mˈÈ m©²º«Ò® ÒÏ
                       Áº}‚°È ¹È¯È­ºã© ¹º°ãË ºˆ¯ÈÎËÓÒ« ºˆ ¹È¯È­ºã© ¯È°¹¯º°ˆ¯Èӫˈ°«
                       ¹È¯ÈããËã ÓºË˺°Ò 
             
             
             
¯ºmËËÓÒË}ȰȈËãÓ©²}¹È¯È­ºãË
             
             
                                           x0
    ‘˺¯ËäÈ             ‚°ˆ  $              ˰ˆ ˆº}ȹ¯ÒÓÈãËÎȝȫ¹È¯È­ºãËÏÈÈÓÓº®}ÈÓº
    ¯                              y0
                         ÓÒ˰}Ò䂯ÈmÓËÓÒË䈺Ȃ¯ÈmÓËÓÒË}ȰȈËã Óº®}ªˆº®¹È¯È­ºãË
                         ¹¯º²º«Ë®˯Ëψº}‚bÒäËˈmÒ
                         
                                                                          yy0 = p( x + x0 ) 
             
       iº}ÈÏȈËã°ˆmº
        
        
            ¯ÈmÓËÓÒË}ȰȈËã Óº®mˆº}Ë$ÒäËˈmÒ y − y0 = y ′( x0 )( x − x0 ) i㫹ȯȭº
                                                                                                                                 p
            ã©ÒÏ}ÈÓºÓÒ˰}ºº‚¯ÈmÓËÓÒ«¹ºã‚ÈËä 2 yy ′ = 2 p ˆº˰ˆ  y ′( x0 ) =                                             y 0 ≠ 0 
                                                                                                                                y0
                               p
            sº ˆºÈ y − y0 =  ( x − x0 )  ¹¯ÒÓÒäÈ« mº mÓÒäÈÓÒË ˆº y02 = 2 px0  º}ºÓÈ
                              y0
            ˆËã Óº¹ºã‚Òä yy0 = p( x + x0 ) 
           
           sÈ}ºÓË Ó˹º°¯Ë°ˆmËÓÓº ¹¯ºm˯«Ëä ‚ˆm˯ÎËÓÒË ˆËº¯Ëä© ã« ˆº}Ò y 0 = 0 
           Ë‚¯ÈmÓËÓÒË}ȰȈËã Óº® x = 0 
           
           
        ‘˺¯ËäȺ}ÈÏÈÓÈ