Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 312 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
iº}ÈÏÈËã°mº°mº®°mÈ°˺¯Ëä©¯
sȹ¯Èmã«Ò® mË}º¯ }ȰÈËãÓº® } ¹È¯ÈºãË m º }Ë
A
˰
y
p
0
 È mË}º¯
Áº}ÈãÓºº¯ÈÒ°È
x
p
y
0
0
2
ºªºä
22
0
0
2
0
2
0
22
0
000
)
2
(
)
2
(
cos
py
y
y
p
xpy
py
p
xy
+
=
++
+
=
α

sº°¯º®°º¯ºÓ©}º°ÒÓ°ãÈ
β
äËÎmË}º¯ÈäÒ
y
p
0
Ò
1
0
m©¯ÈÎÈË°«
º®ÎËÁº¯ä㺮º°}ºã}ã©
α
Ò
β
º°¯©ËººÓÒ¯ÈmÓ©
˺¯ËäÈº}ÈÏÈÓÈ
¯ÈmÓËÓÒË¹È¯Èºã©m¹ºã«¯Óº®°Ò°ËäË}ºº¯ÒÓÈ
ºä˰Òä ¹ºã° ¹ºã«¯Óº® °Ò°Ëä©
}ºº¯ÒÓÈmÁº}°¹È¯Èºã©È¹ºã«¯
Óº° Óȹ¯ÈmÒä ¹º ãÒÓÒÒ
¹Ë¯¹ËÓÒ}㫯Ӻ® Ò¯Ë}¯Ò°Ë Ò
¹¯º²º«Ë® ˯ËÏ ËË Áº}° cÒ°
¯
iã« ¹¯ºÒÏmºãÓº® º}Ò
$
 ãËÎÈË®
ÓÈ¹È¯ÈºãË
ϕ
ρ
α
ρ
ρ
cos
2
cos
22
+=++=+=
p
ppp
x

|}È
p
=
)cos1(
ϕ
ρ
\
$



ρ

2)

ϕ
[
'
èqxytvr¯
Òº}ºÓÈËãÓº
ϕ
ρ
cos1
=
p

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº°mº®°ˆmȰˆËº¯Ë䩁¯ 
    
         
                                                                                                                         y0
          sȹ¯Èmã« Ò® mË}ˆº¯ }ȰȈËã Óº® } ¹È¯È­ºãË m ˆº}Ë A ˰ˆ                                                  È mË}ˆº¯
                                                                                                                         p
                                                           p
                                                   x0 −
          Áº}Èã Óºº¯È҂°È                            2 ºªˆºä‚
                                                      y0
          
                                                                          p
                                                              y0 ( x0 −     ) + py0
                                                                         2                            y0
                                         cos α =                                      =                         
                                                        y02   +p   2           p 2
                                                                       ( x0 − ) + y02               y02 + p 2
                                                                               2
                                                                             
                                                                                                           y0     1
          sº°¯‚º®°ˆº¯ºÓ©}º°Òӂ°‚ãÈ β äË΂mË}ˆº¯ÈäÒ                                             Ò   m©¯ÈÎÈˈ°«
                                                                                                           p      0
          ˆº®ÎËÁº¯ä‚㺮º°}ºã }‚‚ã© α Ò β º°ˆ¯©ËˆººÓÒ¯ÈmÓ©
     
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
              
              
              
¯ÈmÓËÓÒ˹ȯȭºã©m¹ºã«¯Óº®°Ò°ˆËäË}ºº¯ÒÓȈ
         
         
  ºä˰ˆÒä ¹ºã ° ¹ºã«¯Óº® °Ò°ˆËä©                                  \
  }ºº¯ÒÓȈmÁº}‚°¹È¯È­ºã©È¹ºã«¯                                 
  ӂ  º°  Óȹ¯ÈmÒä ¹º ãÒÓÒÒ                                      $
  ¹Ë¯¹ËÓÒ}‚㫯Ӻ®     Ò¯Ë}ˆ¯Ò°Ë   Ò                               ρ
  ¹¯º²º«Ë® ˯ËÏ ËË Áº}‚° cÒ°                                 

 ¯                                                           2)ϕ[
  iã« ¹¯ºÒÏmºã Óº® ˆº}Ò $ ãËÎȝˮ                               
 ÓȹȯȭºãË                                                         '
 
                                                                       
         p p          p                                                
  ρ = x + = + ρ cosα + = p + ρ cos ϕ 
         2 2          2                                                
                                                                      
 |ˆ}‚È ρ (1 − cos ϕ ) = p                                           èqxytvr¯
              

                                      p
  Òº}ºÓȈËã Óº ρ =                      
                                   1−cos ϕ