Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 310 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°ȯÈºãÈ
/
ºãÈÈË º°Ëmº® °ÒääË¯ÒË® ºÓº°ÒËãÓº º°Ò
2[
º m©Ë}ÈË
ÒÏºÓºËÓÒ«
L
y
x
L
y
x

ºËmÒÓººã«}ÈÓºÓÒ˰}ºº¯ÈmÓËÓÒ«¹È¯Èºã©
°
iã« ¹È¯Èºã© ÒäËË ä˰º äºÓººÓÓºË mºÏ¯È°ÈÓÒË È°ºãÓº® mËãÒÒÓ©
º¯ÒÓÈ© ¹¯Ò mºÏ¯È°ÈÓÒÒ È°Ò°°© ¹¯ÒËä m ÓãË }ȰÈËãÓÈ« } ¹È¯ÈºãË
m˯Ò}ÈãÓÈ
˺¯ËäÈ
¯
°
$
x
y
˰º}È¹¯ÒÓÈãËÎÈÈ«¹È¯ÈºãË
/
 ÏÈ ÈÓÓº®}È
ÓºÓÒ˰}Òä ¯ÈmÓËÓÒËä º È ÒäË ä˰º °ãËÒË °ººÓºË
ÓÒ«
°

rx
p
=+
2

°

ρ
ρ
(,)
(, )
AF
AD
=
1

°

ρ
ρ
(,)
(,)
,
MF
MD
MM L=⇒ 1

°

||FB p
=

°

∠=
αβ

iº}ÈÏÈËã°mº
°
 jäËËä
22
)
2
( y
p
xr
+=
 Ò°¹ºãÏ« }ÈÓºÓÒ˰}ºË ¯ÈmÓËÓÒË ¹ºãÈËä
|
2
|2
4
2
2
p
xpx
p
pxxr +=++=
 Óº ¹º°}ºã}
x
p
≥−
2
 ¹¯Ò²ºÒä °¯ÈÏ }
°¹¯ÈmËãÒmº°Òm˯ÎËÓÒ®
°
Ò
°

v¹¯ÈmËãÒmº°
°
º}ÈÎÒË°È亰º«ËãÓº
°
 sÈ}ºÓË
||FB p
p
p
==
2
2

°
 iº}ÈÏÈËã°mº¹¯ÒmºÒ°«¹º°ãËº}ÈÏÈËã°mÈ˺¯Ëä©¯
˺¯ËäÈº}ÈÏÈÓÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



       °È¯È­ºãÈ / º­ãÈÈˈ º°Ëmº® °Òääˈ¯ÒË® ºˆÓº°ÒˆËã Óº º°Ò 2[ ˆº m©ˆË}Èˈ
            ÒϺˆÓº ËÓÒ«
                                                            x                       x
                                                                ∈L      ⇔               ∈ L 
                                                            y                    −y
                                                    
                ºËmÒÓººã«}ÈÓºÓÒ˰}ºº‚¯ÈmÓËÓÒ«¹È¯È­ºã©
                
           °iã« ¹È¯È­ºã© ÒäËˈ ä˰ˆº äºÓºˆºÓÓºË mºÏ¯È°ˆÈÓÒË È­°ºã ˆÓº® mËãÒÒÓ©
                º¯ÒÓȈ© ¹¯Ò mºÏ¯È°ˆÈÓÒÒ È­°Ò°°© ¹¯ÒËä m ӂãË }ȰȈËã ÓÈ« } ¹È¯È­ºãË
                m˯ˆÒ}Èã ÓÈ
              
              
              
                                             x
   ‘˺¯ËäÈ                ‚°ˆ $              ˰ˆ ˆº}ȹ¯ÒÓÈãËÎȝȫ¹È¯È­ºãË /ÏÈÈÓÓº®}È
   ¯                                 y
                           ÓºÓÒ˰}Òä ‚¯ÈmÓËÓÒËä ˆºÈ ÒäË ˆ ä˰ˆº °ãË‚ ÒË °ººˆÓºË
                           ÓÒ«
                           
                                             p                   ρ ( A, F )
                           ° r = x +        °            = 1 
                                             2                   ρ ( A, D)
                           

                                  ρ ( M, F)                                        →
                           °              = 1 ⇒ ∀M , M ∈ L ° | FB | = p 
                                  ρ ( M , D)
                           
                           ° ∠α = ∠β 
                           
        
  iº}ÈÏȈËã°ˆmº
   
                                                 p 2
             ° jäËËä r =             (x −     ) + y 2  Ò°¹ºã ς« }ÈÓºÓÒ˰}ºË ‚¯ÈmÓËÓÒË ¹ºã‚ÈËä
                                                 2
                                             p2               p                         p
                     r = x 2 − px +             + 2 px = | x + |  Óº ¹º°}ºã }‚ x ≥ −  ¹¯Ò²ºÒä °¯Èς }
                                             4                2                         2
                  °¹¯ÈmËãÒmº°ˆÒ‚ˆm˯ÎËÓÒ®°Ò°
             
             
             v¹¯ÈmËãÒmº°ˆ °º}ÈÎ҈˰È亰ˆº«ˆËã Óº
             
                                         →               p
             °    sÈ}ºÓË | FB | = 2 p               = p 
                                                         2
             
             °    iº}ÈÏȈËã °ˆmº¹¯Òmº҈°«¹º°ã˺}ÈÏȈËã °ˆmȈ˺¯Ë䩁¯
       
       
       ‘˺¯ËäȺ}ÈÏÈÓÈ