Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 308 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
iº}ÈÏÈËã°mº
¯ÈmÓËÓÒË}ȰÈËãÓº®mº}Ë
$
ÒäËËmÒ
))((
000
xxxyyy
=

iã« ҹ˯ºã© ÒÏ }ÈÓºÓÒ˰}ºº ¯ÈmÓËÓÒ« ¹ºãÈËä
0
22
22
=
b
yy
a
x
 º ˰
0
0
2
2
0
)(
y
x
a
b
xy
=
 sº ºÈ
)(
0
0
0
2
2
0
xx
y
x
a
b
yy
=
 ¹¯ÒÓÒäÈ« mº mÓÒäÈÓÒË º
1
2
2
0
2
2
0
=
b
y
a
x
º}ºÓÈËãÓº¹ºãÒä
1
2
0
2
0
=
b
yy
a
xx

sÈ}ºÓË Ó˹º°¯Ë°mËÓÓº ¹¯ºm˯«Ëä m˯ÎËÓÒË ˺¯Ëä© ã« ºË}
y
0
0
=

Ë¯ÈmÓËÓÒ«}ȰÈËãÓ©²ÒäËmÒ
xa

˺¯ËäÈº}ÈÏÈÓÈ

¯ÈmÓËÓÒËҹ˯ºã©m¹ºã«¯Óº®°Ò°ËäË}ºº¯ÒÓÈ
ºä˰Òä ¹ºã° ¹ºã«¯Óº® °Ò°Ëä©
}ºº¯ÒÓÈm ¹¯Èm©®Áº}° ҹ˯º
ã©È¹ºã«¯Óº°Óȹ¯ÈmÒä¹º¹º
ãºÎÒËãÓº® ¹ºãº°Ò
Ox
 cÒ°
¯
jäËËä ã« ¹¯ºÒÏmºãÓº® º}Ò
$

ãËÎÈË®ÓÈ¹¯Èmº®mËmÒҹ˯ºã©
ρ
ε
ε
ρ
ϕε
ε
ρ
ϕε
==+ =
=− + + =
=− + +
rax
aa
aa
1
2
( cos )
cos .
|}È
ρ
εϕ ε
( cos ) ( )11
2
−=
a
Ò
º}ºÓÈËãÓº
ρ
εϕ
=
p
1cos


r
1
D
E
E
\
[
)


2
'
$
ϕ
èqxytvr¯
¯ȯÈºãÈÒËË°mº®°mÈ
|¹¯ËËãËÓÒË
¯
z¯ÒmÈ« ¯ÈmÓËÓÒË }ºº¯º® m ÓË}ºº¯º® º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË
}ºº¯ÒÓÈÒäËËmÒ
ypxp
2
20
=>
;
ÓÈÏ©mÈË°«wjéjivsvp
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº
    
        ¯ÈmÓËÓÒË}ȰȈËã Óº®mˆº}Ë$ÒäËˈmÒ y − y0 = y ′( x0 )( x − x0 ) 
        
                                                                                                                   2x       2 yy ′
          iã« ҹ˯­ºã© ÒÏ }ÈÓºÓÒ˰}ºº ‚¯ÈmÓËÓÒ« ¹ºã‚ÈËä                                                       −            = 0  ˆº ˰ˆ 
                                                                                                                   a2        b2
                               b 2 x0                        b 2 x0
           y ′( x0 ) =                 sº ˆºÈ y − y0 =        ( x − x0 )  ¹¯ÒÓÒäÈ« mº mÓÒäÈÓÒË ˆº
                               a 2 y0                        a 2 y0
           x02         y02                                           x0 x         y0 y
               2
                   −       2
                               = 1º}ºÓȈËã Óº¹ºã‚Òä                 2
                                                                              −           = 1 
           a           b                                              a           b2
          
          sÈ}ºÓË Ó˹º°¯Ë°ˆmËÓÓº ¹¯ºm˯«Ëä ‚ˆm˯ÎËÓÒË ˆËº¯Ëä© ã« ˆºË} y 0 = 0 
          Ë‚¯ÈmÓËÓÒ«}ȰȈËã Ó©²ÒäË ˆmÒ x = ± a 
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
            
            
            
¯ÈmÓËÓÒËҹ˯­ºã©m¹ºã«¯Óº®°Ò°ˆËäË}ºº¯ÒÓȈ
        
        
 ºä˰ˆÒä ¹ºã ° ¹ºã«¯Óº® °Ò°ˆËä©                                                                     \
 }ºº¯ÒÓȈ m ¹¯Èm©® Áº}‚° ҹ˯­º
 ã©È¹ºã«¯Ó‚ º° Óȹ¯ÈmÒ乺¹º
                                                                                                           '
 ãºÎ҈Ëã Óº® ¹ºã‚º°Ò Ox        cÒ°                                                                           $
 ¯                                                                              
                                                                                                   E
 jäËËä ã« ¹¯ºÒÏmºã Óº® ˆº}Ò $                                                    r1 
 ãËÎȝˮÓȹ¯Èmº®mˈmÒҹ˯­ºã©
                                                                                                                                    ϕ     [
                                                                                                   2
           ρ = r1 = − a + xε =                                                                                     D           )
                 = −a + ε ( ρ cos ϕ + aε ) = 
                       = −a + ε ρ cos ϕ + aε 2        .
                                    
                                                                                                   E
 |ˆ}‚È   ρ (1 − ε cos ϕ ) = a (ε 2 − 1)                    Ò
                          p                                                                                                                      
 º}ºÓȈËã Óº ρ =                                                
                     1 − ε cos ϕ                                    èqxytvr¯
            
            
            
            
¯È¯È­ºãÈÒË˰mº®°ˆmÈ
            
            
            
 |¹¯ËËãËÓÒË                  z¯ÒmÈ« ‚¯ÈmÓËÓÒË }ºˆº¯º® m ÓË}ºˆº¯º® º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË
 ¯
                               }ºº¯ÒÓȈÒäËˈmÒ y 2 = 2 px ;                  p > 0 ÓÈÏ©mÈˈ°«wjéjivsvp