Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 313 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈ¹ºm˯²Óº°Ë®mº¯ºº¹º¯«
¯ÒãºÎËÓÒË
v{|qv{k|{pcts|vpq{|c|||cÐizk
{˺¯ËäË©ãÒ¹Ë¯ËÒ°ãËÓ©}ºÓ}¯ËÓ©ËÒ¹©¹ºm˯²Óº°Ë®mº¯ºº¹º
¯«}È¯ÈÏãÒÒËäËÎ}ºº¯©äÒ°º²¯ÈÓ«Ë°«¹¯Ò¹Ë¯Ë²ºËÒÏºÓº®Ë}ȯºmº®°Ò°
Ëä© }ºº¯ÒÓÈ m ¯ { ÈÓÓºä ¹È¯È¯ÈÁË  ¯È°°äº¯ËÓ© º°ÓºmÓ©Ë °mº®°mÈ
ªÒ²Ò¹ºm
¯{©¯ºÎËÓÓ©Ë¹ºm˯²Óº°Òmº¯ºº¹º¯«}È
z m©¯ºÎËÓÓ©ä ¹ºm˯²Óº°«ä mº¯ºº ¹º¯«}È ºÓº°«°« Ò¹© }ÈÏÈÓÓ©Ë m
¹Ë¯mº®ȰÒÈãÒ©Áº¯äãÒ¯ºm}Ò˺¯Ëä©
{ ¹Ë¯m©² m² °ºãȲ ªº® ÈãÒ© ¹Ë¯ËÒ°ãËÓ© Ò¹© ¹°©² äÓºÎ˰m È
È}ÎËºË}©ºËÓºãÒÓˮӺºÒ¹ÈÒ°°ã˺mÈÓÒË}ºº¯©²¹ºãÓº°ÈÓÈãºÒÓº
°ãÈ«ä¯È°°äº¯ËÓÓ©äm¹¯ÒãºÎËÓÒÒmº¯ºÓº¯äÒ¯ºmÈÓÓº®}ÈÓºÓÒ˰}º®°Ò°ËäË
}ºº¯ÒÓÈ
},,,{
321
eeeO

˯m©Ë¯ÒÒ¹È¹ºm˯²Óº°Ë®°ºË¯ÎÈÒ˰«m¯ËË®}ºãºÓ}ËÈãÒ©«m
ã«°«ȰÓ©äÒ°ãÈ«äÒÒãÒÓ¯Ò˰}º®¹ºm˯²Óº°Òº¯ÈÏÈ«}ºº¯©²¹È¯Èã
ãËãÓÈ¹¯«äº®
x
y
=
=
0
0
ÈÓȹ¯Èmã«ÒäÒ°ãÎÈ¹ãº°}ÒË}¯Òm©ËªããÒ¹°ҹ˯ºãÈÒ
¹È¯ÈºãÈ°ººmË°mËÓÓº¯È°¹ºãºÎËÓÓ©Ëm¹ãº°}º°Ò
Oxy

|¹Ò°ÈÓÒË °mº®°m ÓËm©¯ºÎËÓÓ©² ¹ºm˯²Óº°Ë® mº¯ºº ¹º¯«}È Ë È}ÎË
m©¹ºãÓËÓºmº¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈ
},,,{
321
eeeO

{ ºËä °ãÈË äºÎÓº ¹º}ÈÏÈ ºm°ËËÓÒÒ ¹ºm˯²Óº°Ò mº¯ºº ¹º¯«}È
¹ãº°}º°¹ºãÈË°«}¯ÒmÈ«mº¯ºº¹º¯«}È|ÓÈ}ºã«º¹Ò°ÈÓÒ«º°ÓºmÓ©²°mº®°m
ÓËm©¯ºÎËÓÓ©² ¹ºm˯²Óº°Ë® mº¯ºº ¹º¯«}È º°ÈºÓº ¯È°°äº¯Ë°ËËÓÒ«
¹È¯ÈããËãÓ©Ë}ºº¯ÒÓÈÓ©ä¹ãº°}º°«ä
¯ÒãºÎËÓÒË
vmº®°ˆmȹºm˯²Óº°ˆË®mˆº¯ºº¹º¯«}È



             
             
             
             
             
             
             
¯ÒãºÎËÓÒË
v{|qv‘{k|{pcts|v‘pq{‘|c|€||cÐizk
        
        
        
        
        {ˆËº¯ËäË­©ãҹ˯ËÒ°ãËÓ©}ºÓ}¯ËˆÓ©ËˆÒ¹©¹ºm˯²Óº°ˆË®mˆº¯ºº¹º
¯«}ȯÈÏãÒÒËäË΂}ºˆº¯©äÒ°º²¯Èӫˈ°«¹¯Ò¹Ë¯Ë²ºËÒϺӺ®Ë}ȯˆºmº®°Ò°
ˆËä© }ºº¯ÒÓȈ m ¯‚‚  { ÈÓÓºä ¹È¯È¯ÈÁË ­‚‚ˆ ¯È°°äºˆ¯ËÓ© º°ÓºmÓ©Ë °mº®°ˆmÈ
ªˆÒ²ˆÒ¹ºm
        
        
        
        
¯{©¯ºÎËÓө˹ºm˯²Óº°ˆÒmˆº¯ºº¹º¯«}È
       
       
       
       z m©¯ºÎËÓÓ©ä ¹ºm˯²Óº°ˆ«ä mˆº¯ºº ¹º¯«}È ºˆÓº°«ˆ°« ˆÒ¹© ‚}ÈÏÈÓÓ©Ë m
¹Ë¯mº®ȰˆÒˆÈ­ãÒ©Áº¯ä‚ãÒ¯ºm}҈˺¯Ëä©
       
       { ¹Ë¯m©² m‚² °ˆºã­Ȳ ªˆº® ˆÈ­ãÒ© ¹Ë¯ËÒ°ãËÓ© ˆÒ¹© ¹‚°ˆ©² äÓºÎ˰ˆm È
ˆÈ}Î˺­žË}ˆ©ˆºËÓºãÒÓˮӺºˆÒ¹ÈÒ°°ã˺mÈÓÒË}ºˆº¯©²¹ºãÓº°ˆ ÈÓÈãºÒÓº
°ã‚È«ä¯È°°äºˆ¯ËÓÓ©äm¹¯ÒãºÎËÓÒÒmº¯ˆºÓº¯äÒ¯ºmÈÓÓº®}ÈÓºÓÒ˰}º®°Ò°ˆËäË
                        → → →
}ºº¯ÒÓȈ {O , e1 , e 2 , e3 } 
       
       Ë¯m©Ëˆ¯ÒˆÒ¹È¹ºm˯²Óº°ˆË®°º˯ÎȝÒ˰«mˆ¯Ëˆ Ë®}ºãºÓ}ˈȭãÒ©«m
ã« ˆ°«ȰˆÓ©äÒ°ã‚È«äÒÒãÒÓ¯Ò˰}º®¹ºm˯²Óº°ˆÒº­¯Èς È«}ºˆº¯©²¹È¯Èã
               x = 0
ãËã Óȹ¯«äº®       ÈÓȹ¯Èmã« ÒäÒ°ã‚ÎȈ¹ãº°}ÒË}¯Òm©ËªããÒ¹°ҹ˯­ºãÈÒ
               y = 0
¹È¯È­ºãȰººˆmˈ°ˆmËÓÓº¯È°¹ºãºÎËÓÓ©Ëm¹ãº°}º°ˆÒ Oxy 
             
             
             |¹Ò°ÈÓÒË °mº®°ˆm ÓËm©¯ºÎËÓÓ©² ¹ºm˯²Óº°ˆË® mˆº¯ºº ¹º¯«}È ­‚ˈ ˆÈ}ÎË
                                                                                               → → →
m©¹ºãÓËÓºmº¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°ˆËäË}ºº¯ÒÓȈ {O , e1 , e 2 , e3 } 
       
       
       { º­Ëä °ã‚ÈË äºÎÓº ¹º}ÈÏȈ  ˆº m °ËËÓÒÒ ¹ºm˯²Óº°ˆÒ mˆº¯ºº ¹º¯«}È
¹ãº°}º°ˆ ¹ºã‚Èˈ°«}¯ÒmÈ«mˆº¯ºº¹º¯«}È|ÓÈ}ºã«º¹Ò°ÈÓÒ«º°ÓºmÓ©²°mº®°ˆm
ÓËm©¯ºÎËÓÓ©² ¹ºm˯²Óº°ˆË® mˆº¯ºº ¹º¯«}È º°ˆÈˆºÓº ¯È°°äºˆ¯Ëˆ  °ËËÓÒ«
¹È¯ÈããËã Ó©Ë}ºº¯ÒÓȈөä¹ãº°}º°ˆ«ä