Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 303 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
¯ÈmÓËÓÒËªããÒ¹°Èm¹ºã«¯Óº®°Ò°ËäË}ºº¯ÒÓÈ
ºä˰Òä ¹ºã° ¹ºã«¯Óº® °Ò°Ëä© }ºº¯ÒÓÈ m ãËm©® Áº}° ªããÒ¹°È È
¹ºã«¯Óº°Óȹ¯ÈmÒä¹ºãÒÓÒÒ°ºËÒÓ«Ë®˺Áº}°©jäËËäã«¹¯ºÒÏmºãÓº®
º}Ò
A
ãËÎÈË®ÓÈªããÒ¹°Ë¯Ò°¯
ρ
εε
ρ
ϕε ε
ρ
ϕε
==+ =+ =+
raxa a a a
2
2
( cos ) cos

|}È
)1()cos1(
2
εϕε
ρ
= a
Òº}ºÓÈËãÓº
ϕε
ρ
cos1
=
p

\
A

ρ
x

ϕ
O
èqxytvr¯
¯ҹ˯ºãÈÒËË°mº®°mÈ
|¹¯ËËãËÓÒË
¯
z¯ÒmÈ« ¯ÈmÓËÓÒË }ºº¯º® m ÓË}ºº¯º® º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË
}ºº¯ÒÓÈÒäËËmÒ
00;1
2
2
2
2
>>= ba
b
y
a
x
ÓÈÏ©mÈË°«mqwnéivsvp
|¹¯ËËãËÓÒË
¯
Ò°ãº
a
ba
22
+
=
ε
ÓÈÏ©mÈË°«ërx|ntzéqxqznzvuҹ˯ºã©
º}Ò
0
a
ε
±
ÓÈÏ©mÈ°«{vryxjuqҹ˯ºã©
¯«ä©Ë
ε
a
x ±=
ÓÈÏ©mÈ°«lqénrzéqxjuqҹ˯ºã©
Ò°ãº
a
b
p
2
=
ÓÈÏ©mÈË°«{vrjstuwjéjunzévuҹ˯ºã©
¯ÒãºÎËÓÒË
vmº®°ˆmÈãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ



¯ÈmÓËÓÒ˪ããÒ¹°Èm¹ºã«¯Óº®°Ò°ˆËäË}ºº¯ÒÓȈ
       
       
       ºä˰ˆÒä ¹ºã ° ¹ºã«¯Óº® °Ò°ˆËä© }ºº¯ÒÓȈ m ãËm©® Áº}‚° ªããÒ¹°È È
¹ºã«¯Ó‚ º° Óȹ¯ÈmÒ乺ãÒÓÒÒ°ºËÒÓ« Ë®ËºÁº}‚°©jäËËä㫹¯ºÒÏmºã Óº®
ˆº}ÒAãËÎȝˮÓȪããÒ¹°Ë ¯Ò°¯ 
       
                                ρ = r2 = a + xε = a + ε ( ρ cos ϕ − aε ) = a + ε ρ cos ϕ − aε 2 
          
    |ˆ}‚È                                                        
                                                                  \
                 ρ (1 − ε cos ϕ ) = a(1 − ε 2 )                   
                                                                   
                                
                                                                   A
                             p
    Òº}ºÓȈËã Óº ρ =                                          
                        1− ε cos ϕ                                 ρx
                                                                   ϕO
                                                                   
                                                                   
                                                                   
                                                                   
                                                                   
                                                                   èqxytvr¯
             
             
             
             
¯€Ò¹Ë¯­ºãÈÒË˰mº®°ˆmÈ
             
             
             
    |¹¯ËËãËÓÒË          z¯ÒmÈ« ‚¯ÈmÓËÓÒË }ºˆº¯º® m ÓË}ºˆº¯º® º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË
    ¯
                                                              x2       y2
                          }ºº¯ÒÓȈÒäËˈmÒ                     −        =1;     a>0        b > 0 ÓÈÏ©mÈˈ°«mqwnéivsvp
                                                              a2       b2
             
             
    |¹¯ËËãËÓÒË
    ¯                               a2 + b2
                              Ұ㺠ε =              ÓÈÏ©mÈˈ°«ërx|ntzéqxqznzvuҹ˯­ºã©
                                               a
                          

                                      ±εa
                          ‘º}Ò              ÓÈÏ©mÈ ˆ°«{vryxjuqҹ˯­ºã©
                                        0
                          
                                                a
                          ¯«ä©Ë x = ±           ÓÈÏ©mÈ ˆ°«lqénrzéqxjuqҹ˯­ºã©
                                                ε
                          
                                            b2
                              Ұ㺠p =        ÓÈÏ©mÈˈ°«{vrjst€uwjéjunzévuҹ˯­ºã©
                                            a