Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 301 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


vmº®°mÈãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
°iÈãËË
ρ
ρ
ε
ε
ε
ρ
ρ
ε
ε
ε
(, )
(, )
;
(, )
(, )
AF
AD
ax
a
x
AF
AD
ax
a
x
1
1
2
2
=
==
+
+
=

°
v¹¯ÈmËãÒmº°
°
º}ÈÎÒË°È亰º«ËãÓº
°
sÈ}ºÓË
||FB
b
a
aa
b
a
ab
b
a
p
2
222 2
1
=−===
εε

°iº}ÈÏÈËã°mº¹¯ÒmºÒ°«¹º°ãËº}ÈÏÈËã°mÈ˺¯Ëä©¯
˺¯ËäÈº}ÈÏÈÓÈ
¯ºmËËÓÒË}ȰÈËã Ó©²}ªããÒ¹°
˺¯ËäÈ
¯
°
A
x
y
0
0
˰º}È¹¯ÒÓÈãËÎÈÈ«ªããÒ¹°ÏÈÈÓÓºä}ÈÓº
ÓÒ˰}Òä¯ÈmÓËÓÒËäºÈ¯ÈmÓËÓÒË}ȰÈËãÓº®}ªºäªããÒ¹°
¹¯º²º«Ë®˯ËÏº}
$
ÒäËËmÒ

1
2
0
2
0
=+
b
yy
a
xx
iº}ÈÏÈËã°mº
¯ÈmÓËÓÒË}ȰÈËãÓº®mº}Ë
A
ÒäËËmÒ
yy yx xx−=
000
()( )

iã« ªããÒ¹°È ÒÏ }ÈÓºÓÒ˰}º º ¯ÈmÓËÓÒ« ¹ºãÈËä
0
22
22
=
+
b
yy
a
x
 º ˰
0
0
2
2
0
)(
y
x
a
b
xy =
 sº ºÈ
)(
0
0
0
2
2
0
xx
y
x
a
b
yy =
 ¹¯ÒÓÒäÈ« mº mÓÒäÈÓÒË º
1
2
2
0
2
2
0
=+
b
y
a
x
º}ºÓÈËãÓº¹ºãÒä
1
2
0
2
0
=+
b
yy
a
xx

sÈ}ºÓË Ó˹º°¯Ë°mËÓÓº ¹¯ºm˯«Ëä m˯ÎËÓÒË ˺¯Ëä© ã« ºË}
y
0
0
=

Ë¯ÈmÓËÓÒ«}ȰÈËãÓ©²ÒäËmÒ
xa

˺¯ËäÈº}ÈÏÈÓÈ
¯ÒãºÎËÓÒË
vmº®°ˆmÈãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ



                                  ρ ( A, F1 ) a − xε               ρ ( A, F2 ) a + xε
            °iÈãËË                      =       =ε ;                     =       = ε 
                                  ρ ( A, D1 ) a                    ρ ( A, D2 ) a
                                                 −x                               +x
                                               ε                                ε
            
            
            °v¹¯ÈmËãÒmº°ˆ °º}ÈÎ҈˰È亰ˆº«ˆËã Óº
               
            °sÈ}ºÓË
                                                 →         b                b             b
                                              | F2 B | =     a 2 − a 2 ε 2 = a 1 − ε 2 = b = p 
                                                           a                a             a
          
          
          °iº}ÈÏȈËã °ˆmº¹¯Òmº҈°«¹º°ã˺}ÈÏȈËã °ˆmȈ˺¯Ë䩁¯
             
          
          
        ‘˺¯ËäȺ}ÈÏÈÓÈ
             
             
             
¯ºmËËÓÒË}ȰȈËãÓ©²}ªããÒ¹°‚
              
              
                                              x0
    ‘˺¯ËäÈ                      ‚°ˆ  A        ˰ˆ ˆº}ȹ¯ÒÓÈãËÎȝȫªããÒ¹°‚ÏÈÈÓÓºä‚}ÈÓº
    ¯                                 y0
                                  ÓÒ˰}Ò䂯ÈmÓËÓÒË䈺Ȃ¯ÈmÓËÓÒË}ȰȈËã Óº®}ªˆºä‚ªããÒ¹°‚
                                  ¹¯º²º«Ë®˯Ëψº}‚$ÒäËˈmÒ
                                                                      x x y y
                                   0 + 0 = 1 
                                                                       a2           b2
              
     iº}ÈÏȈËã°ˆmº
      
      
         ¯ÈmÓËÓÒË}ȰȈËã Óº®mˆº}ËAÒäËˈmÒ y − y 0 = y ′( x 0 )( x − x 0 ) 
         
                                                                                                            2x          2 yy ′
             iã« ªããÒ¹°È ÒÏ }ÈÓºÓÒ˰}ºº ‚¯ÈmÓËÓÒ« ¹ºã‚ÈËä
                                                                                                                2
                                                                                                                    +            = 0  ˆº ˰ˆ 
                                                                                                            a            b2
                           b 2 x0                          b 2 x0
              y ′( x0 ) = − 2      sº ˆºÈ y − y0 = −        ( x − x0 )  ¹¯ÒÓÒäÈ« mº mÓÒäÈÓÒË ˆº
                           a y0                            a 2 y0
              x02         y02                                          x0 x         y0 y
                  2
                      +       2
                                  = 1 º}ºÓȈËã Óº¹ºã‚Òä               2
                                                                                +          = 1 
              a           b                                             a           b2
             
             sÈ}ºÓË Ó˹º°¯Ë°ˆmËÓÓº ¹¯ºm˯«Ëä ‚ˆm˯ÎËÓÒË ˆËº¯Ëä© ã« ˆºË} y 0 = 0 
             Ë‚¯ÈmÓËÓÒ«}ȰȈËã Ó©²ÒäË ˆmÒ x = ± a 
        
        
        ‘˺¯ËäȺ}ÈÏÈÓÈ