Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 295 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË¯©
° vº ÏÓÈËÓÒ«äÒ }ºä¹ºÓËÓ ¯ÈÏãºÎËÓÒ« ªãËäËÓÈ ¹¯ÒÓÈãËÎÈ˺
Λ

¹ºº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°
{, [,]}HN Q
N
= 0
°ä°ã˰mÒË
È}Òäº¯ÈϺäº¯ººÓÈãÓº°°Ò°Ëä©ªãËäËÓºmÒ°¹ºãÏË亮ã«ȹ¹¯º}
°ÒäÈÒÒ°˰mËÓÓº¹¯ºÈËÒ°ãËÓÒ«{ä˰Ë°Ëäº¯ººÓÈãÒÏÈÒ«¹ºäËº
¯ÈäÈbäÒÈm°ãÈË ˰}ºÓËÓºä˯Ӻº Ëm}ãÒºmÈ ¹¯º°¯ÈÓ°mÈ äºÎË º}ÈÏÈ°«
º°ÈºÓº°ãºÎÓº®¹¯ºË¯º®
{ºÏäºÎÓº®Èã˯ÓÈÒmº®m¹ ¯ºË°°Ë¹º°¯ºËÓÒ« º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°Ëä©
ȹ¹¯º}°ÒäÒ¯Ò²ªãËäËÓºm«mã«Ë°«ãËääÈ  m˯ÎÈÈ« º °º°mËÓÓ©Ë
mË}º¯©xjuvxvwé¹nttvmvº¹Ë¯Èº¯ÈºmËÈÒË¯ÈÏãÒÓ©ä°º°mËÓÓ©äÏÓÈËÓÒ«ä
¹º¹È¯Óºº¯ººÓÈãÓ©
cȰ°äº¯Òä ãÒÓˮө® º¹Ë¯Èº¯ m Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË ˰}ºÓËÓº ÒÁ
Á˯ËÓÒ¯Ë䩲ÓÈ
[

]
ÁÓ}Ò®°Èm«Ò®}Èκ®È}º®ÁÓ}ÒÒm°ººmË°mÒË

ËË mº¯ ¹¯ºÒÏmºÓ mÏ« ° º¯ÈÓ©ä ÏÓÈ}ºä Ò m©«°ÓÒä ¹¯Ò }È}Ò² °ãºmÒ«²
ªºº¹Ë¯Èº¯Ë°È亰º¹¯«ÎËÓÓ©äjÓ˯ү«¹ºȰ«ä¹ºãÒä
.)()(),
ˆ
(
1
1
1
1
1
1
2
2
τ
ττ
τ
τ
ττ
τ
d
d
dy
d
dx
y
d
dx
dy
d
xd
yxA
+==
sº°¯º®°º¯ºÓ©
.)()()
ˆ
,(
1
1
1
1
1
1
2
2
τ
τττ
ττ
τ
τ
d
d
dy
d
dx
d
dy
xd
d
yd
xyAx
+==
ºªºä ã« °È亰º¹¯«ÎËÓÓº°Ò º¹Ë¯Èº¯È
A
º°ÈºÓº º©
1
1
1
1
)()(
=
dt
dy
txty
dt
dx

wº °ãºmÒË m©¹ºãÓ«Ë°« Óȹ¯Òä˯ ã« ÁÓ}Ò® }ºº¯©Ë È} ÎË }È} Ò Ò² ¹ ¯ºÒÏ
Ó©ËÒäË¯ÈmÓ©ËÏÓÈËÓÒ«ÓÈ}ºÓȲº¯ËÏ}È
[

]

sÈ®Ëä˹˯°º°mËÓÓ©ËmË}º¯©ãÒÓˮӺºº¹Ë¯Èº¯È
A
°ãºmÒË
Ax x=
λ
mÈÓÓºä°ãÈË°mºÒ°«}ÒÁÁ˯ËÓÒÈãÓºä¯ÈmÓËÓÒ
0,
2
2
=
λλ
τ
x
d
xd
¯ËË

¯Òº}ÈÏÈËã°mË˺¯Ëä©©ãº¹º}ÈÏÈÓº ºº¹Ë¯Èº¯È

SS
+
˰°È亰º¹¯«
ÎËÓÓ©®ÒÒäËËÓ˺¯ÒÈËãÓ©Ë°º°mËÓÓ©ËÏÓÈËÓÒ«p°ãÒ
S
d
d
=
τ
Ò
S
d
d
+
=−
τ
¹¯Òm©
¹ºãÓËÓÒÒ°ººmË°mÒ²¯ÈÓÒÓ©²°ãºmÒ®º
2
2
ˆˆˆ
τ
d
d
SSA ==
+

cÈÏËã
¯Ò}ãÈÓ©ËÏÈÈÒãÒÓˮӺ®ÈãË­¯©



                 ° vº ÏÓÈËÓÒ«äÒ }ºä¹ºÓËӈ ¯ÈÏãºÎËÓÒ« ªãËäËӈÈ ¹¯ÒÓÈãËÎȝ˺ Λ∗ 
                       ¹ºº¯ˆºÓº¯äÒ¯ºmÈÓӺ䂭ÈÏÒ°‚ { H N , N = [0, Q]}  °ä°ã˰ˆmÒË 
        
        
        ‘È}Ò亭¯ÈϺ亯ˆººÓÈã Óº°ˆ °Ò°ˆË䩪ãËäËӈºmÒ°¹ºã ςË亮ã«ȹ¹¯º}
°ÒäÈÒÒ°‚Ë°ˆmËÓÓº‚¹¯ºÈˈm©Ò°ãËÓÒ«{ä˰ˆË°ˆË亯ˆººÓÈãÒÏÈÒ«¹ºäˈº‚
€¯ÈäÈbäÒˆÈ m °ã‚ÈË ­Ë°}ºÓËÓºä˯Ӻº Ëm}ãÒºmÈ ¹¯º°ˆ¯ÈÓ°ˆmÈ äºÎˈ º}ÈÏȈ °«
º°ˆÈˆºÓº°ãºÎÓº®¹¯ºË‚¯º®
        
        
        
        {ºÏäºÎÓº® È㠈˯ÓȈÒmº® m ¹¯º˰°Ë ¹º°ˆ¯ºËÓÒ« º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËä©
ȹ¹¯º}°ÒäÒ¯‚ Ò² ªãËäËӈºm «mã«Ëˆ°« ãËääÈ  ‚ˆm˯ÎÈ È« ˆº °º­°ˆmËÓÓ©Ë
mË}ˆº¯©xjuvxvwé¹ nttvmvº¹Ë¯Èˆº¯ÈºˆmËÈ Ò˯ÈÏãÒÓ©ä°º­°ˆmËÓÓ©äÏÓÈËÓÒ«ä
¹º¹È¯Óºº¯ˆººÓÈã Ó©
        
        cȰ°äºˆ¯Òä ãÒÓˮө® º¹Ë¯Èˆº¯ m Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË ­Ë°}ºÓËÓº ÒÁ
Á˯ËÓÒ¯‚Ë䩲ÓÈ [] Á‚Ó}Ò®°ˆÈm«Ò®}Èκ®ˆÈ}º®Á‚Ó}ÒÒm°ººˆmˈ°ˆmÒË  
ËË mˆº¯‚  ¹¯ºÒÏmºӂ  mÏ«ˆ‚  ° º­¯ÈˆÓ©ä ÏÓÈ}ºä Ò m©«°ÓÒä ¹¯Ò }È}Ò² ‚°ãºmÒ«²
ªˆºˆº¹Ë¯Èˆº¯­‚ˈ°È亰º¹¯«ÎËÓÓ©äjӈ˯ү‚«¹ºȰˆ«ä¹ºã‚Òä
        
                                                     1                                      1       1
                                                      d2x            dx                                  dx dy
                                    ( Aˆ x, y ) = − ∫ 2 y (τ )dτ = −     y (τ )                 +   ∫ dτ dτ dτ . 
                                                   −1 dτ             d τ                   −1       −1
        
sº°¯‚º®°ˆº¯ºÓ©
        
                                                     1                                      1       1
                                                            d2y              dy                          dx dy
                                    ( x, Aˆ y ) = − ∫ x (τ ) 2 dτ = − x (τ )                    +   ∫ dτ dτ dτ . 
                                                   −1       dτ               dτ            −1       −1
             
                                                                                                                                 1                 1
                                                                     dx                 dy
ºªˆºä‚ ã« °È亰º¹¯«ÎËÓÓº°ˆÒ º¹Ë¯Èˆº¯È A  º°ˆÈˆºÓº ˆº­©    y (t ) = x (t )                                                                
                                                                     dt       −1        dt                                                        −1
wˆº ‚°ãºmÒË m©¹ºãӫˈ°« Óȹ¯Òä˯ ã« Á‚Ó}Ò® }ºˆº¯©Ë ˆÈ} ÎË }È} Ò Ò² ¹¯ºÒÏ
mºÓ©Ë ÒäË ˆ¯ÈmÓ©ËÏÓÈËÓÒ«ÓÈ}ºÓȲºˆ¯ËÏ}È[]
        
        
             sÈ®ËäˆË¹Ë¯ °º­°ˆmËÓÓ©ËmË}ˆº¯©ãÒÓˮӺºº¹Ë¯Èˆº¯È A °ãºmÒË Ax
                                                                                   = λx 
                                                                                                               d2x
mÈÓÓºä°ã‚È˰mº҈°«}ÒÁÁ˯ËÓÒÈã Ӻ䂂¯ÈmÓËÓÒ                                                                = −λ x , λ ≥ 0 ¯Ë Ë
                                                                                                               dτ 2

    ¯Òº}ÈÏȈËã °ˆmˈ˺¯Ëä©­©ãº¹º}ÈÏÈÓºˆºº¹Ë¯Èˆº¯mÒÈ S S ˰ˆ °È亰º¹¯«
                                                                           +

                                                                                                                d             d
ÎËÓÓ©®ÒÒäËˈÓ˺ˆ¯ÒȈËã ө˰º­°ˆmËÓÓ©ËÏÓÈËÓÒ«p°ãÒ S =                                                    Ò S = −
                                                                                                                         +
                                                                                                                                  ¹¯Òm©
                                                                                                                dτ            dτ
                                                                                                           2
                                                 ˆ = Sˆ + Sˆ = − d
¹ºãÓËÓÒÒ°ººˆmˈ°ˆm‚ Ò²¯ÈÓÒÓ©²‚°ãºmÒ® ˆº A                                                              
                                                                                                         dτ 2