Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 339 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


wãËäËÓ©ËÓϺ¯ÓººÒ°Ò°ãËÓÒ«
~ÈäËÒä
xyyx
iËãºmºäº²º«Ò
kiik
ξ
ηη
ξ
=
Óº¹º¯«º
ÒmÈÓÒË}ºä¹ºÓËÓºmªÒ²ËÓϺ¯ºmm©¹ºãÓ«Ë°«wvéjotvuyvã˺mÈ
ËãÓºËÓϺ¯ÓºË¹¯ºÒÏmËËÓÒËÓË}ºääÈÒmÓº
ÈÈ
¯
Ìwénlnsqz zqw q ujzéq|y zntovéj
bac
=
 nxsq
a
zntové zqwj
(,3)0
x ujzéq|np
12
34
56
78
 q
b
zntové zqwj
(,)01
x ujzéq|np
910
ËÓÒË
º º¹¯ËËãËÓÒ ËÓϺ¯Óºº ¹¯ºÒÏmËËÓÒ«
c
Ë° ËÓϺ¯ Ò¹È
(,)04
°
äÈ¯ÒË® °º°ÈmãËÓÓº® ° Ëºä °ºãÈËÓÒ«º¹º¯«}Ë ÒÓË}°ºm ÒÏ
¹ºªãËäËÓÓ©²¹¯ºÒÏmËËÓÒ®È
lijk
βα
Ë
ijk
α
Ò
l
β
}ºä¹ºÓËÓ©
ËÓϺ¯ºm
a
Ò
b
°ººmË°mËÓÓº
È}Òäº¯ÈϺääÈ¯ÒÈËÓϺ¯È
c
ÒäËËmÒ
19 29 110 210
39 49 310 410
59 69 510 610
79 89 710 810
9181020
27 36 30 40
45 54 50 60
63 72 70 80
⋅⋅
⋅⋅
⋅⋅
⋅⋅
=

vm˯©mÈÓÒËËÓϺ¯ºm
|¹¯ËËãËÓÒË
¯
° ÈÓ ËÓϺ¯ Ò¹È
),(
pq
q
p
jjj
iii
...
...
2
21
1
α
 ¹¯ÒËä
q 1
Ò
p 1
 {©˯Ëä
ºÒÓm˯²ÓÒ®Óȹ¯Òä˯
r
j
ÒºÒÓÓÒÎÓÒ®Óȹ¯Òä˯
s
i
ÒÓË}°©Ò
m ÏȹҰÒ ËÓϺ¯È ÏÈäËÓÒä Ò² ººÏÓÈËÓÒ« ºÓÒä Ò Ëä ÎË °Òämºãºä
Óȹ¯Òä˯
m
ËÓϺ¯Ò¹È
)1,1( pq
12
121
...
...
1
q
p
jjj
iii
β
ÓÈÏ©mÈË°«xknézrvp
ËÓϺ¯È
qr
ps
jjjj
iiii
......
......
2
21
1
α
¹ºÒÓË}°Èä
r
j
Ò
s
i
 Ë°ãÒ m }ÈκäÈÏÒ°ËÒäËË
äË°º¯ÈmËÓ°mº
12
121
...
...
1
q
p
jjj
iii
β
q
p
jmjj
imii
......
......
2
21
1
α

~ÈäËÒäºm¹º°ãËÓËä¯ÈmËÓ°mË¹¯ÈmÈ«È°ªº°ääÈ
n
°ãÈÈË䩲Ë
m
ÒÓË}°¹º}ºº¯ºäm©¹ºãÓ«Ë°«°ääÒ¯ºmÈÓÒËÈ°ÈäºÈÓÓºËËÓϺ¯ÓºË¯ÈmËÓ
°mº¯ÈmÓº°ÒãÓº
)1)(1( pq
°}È㫯өä¯ÈmËÓ°mÈä
¯ÒãºÎËÓÒË
wãËäËӈ©ˆËÓϺ¯ÓººÒ°Ò°ãËÓÒ«



                        ~ÈäˈÒä x ⊗ y ≠ y ⊗ x iËãºmˆºäˆº²ºˆ«Ò ξ kη i = η iξ k Óº‚¹º¯«º
                        ÒmÈÓÒË}ºä¹ºÓËӈºmªˆÒ²ˆËÓϺ¯ºmm©¹ºãӫˈ°«wvéjotvuyvã˺mÈ
                        ˆËã ÓºˆËÓϺ¯ÓºË¹¯ºÒÏmËËÓÒËÓË}ºä䂈ȈÒmÓº
             
             
    ~ÈÈÈ              Ìwénlnsqz zqw q ujzéq|y zntovéj c = a ⊗ b  nxsq a  zntové zqwj
    ¯
                                                                  1 2
                                                                  3 4
                          ( 0,3)  x ujzéq|np                        q b  zntové zqwj ( 0,1)  x ujzéq|np
                                                                  5 6
                                                                  7 8
                            9 10 
             
    cËËÓÒË             º º¹¯ËËãËÓÒ  ˆËÓϺ¯Óºº ¹¯ºÒÏmËËÓÒ« c Ë°ˆ  ˆËÓϺ¯ ˆÒ¹È ( 0,4)  °
                         äȈ¯ÒË® °º°ˆÈmãËÓÓº® ° ‚ˈºä °ºãÈ ËÓÒ« º ¹º¯«}Ë ÒÓË}°ºm ÒÏ
                         ¹ºªãËäËӈө² ¹¯ºÒÏmËËÓÒ® mÒÈ α ijk β l  Ë α ijk  Ò β l   }ºä¹ºÓËӈ©
                         ˆËÓϺ¯ºmaÒb°ººˆmˈ°ˆmËÓÓº
                         
                         ‘È}Ò亭¯ÈϺääȈ¯ÒȈËÓϺ¯ÈcÒäËˈmÒ
                         
                                                   1⋅ 9 2 ⋅ 9             1 ⋅ 10 2 ⋅ 10    9 18                  10 20
                                                   3⋅ 9 4 ⋅ 9             3 ⋅ 10 4 ⋅ 10   27 36                  30 40
                                                                                        =                              
                                                   5⋅ 9 6⋅ 9              5 ⋅ 10 6 ⋅ 10   45 54                  50 60
                                                   7⋅ 9 8⋅ 9              7 ⋅ 10 8 ⋅ 10   63 72                  70 80
             
             
             
vm˯ˆ©mÈÓÒˈËÓϺ¯ºm
             
             
                                                                              α i1i22...i p q  ¹¯ÒËä q ≥ 1  Ò p ≥ 1  {©­Ë¯Ëä
                                                                                   j1 j ... j
    |¹¯ËËãËÓÒË         ‚°ˆ  ÈÓ ˆËÓϺ¯ ˆÒ¹È ( q, p )
    ¯
                         ºÒÓm˯²ÓÒ® Óȹ¯Òä˯ jr ÒºÒÓÓÒÎÓÒ® Óȹ¯Òä˯ i s ÒÓË}°©Ò
                         m ÏȹҰÒ ˆËÓϺ¯È ÏÈäËÓÒä Ò² º­ºÏÓÈËÓÒ« ºÓÒä Ò ˆËä ÎË °Òämºãºä
                          Óȹ¯Òä˯ m ‘ËÓϺ¯ˆÒ¹È ( q − 1, p − 1)  β i 1i 2...i q−1 ÓÈÏ©mÈˈ°«xknézrvp
                                                                                                     j j ... j
                                                                           1 2      p −1


                         ˆËÓϺ¯È α i 1i 2...i ...r i q  ¹º ÒÓË}°Èä jr  Ò i s  Ë°ãÒ m }ÈÎºä ­ÈÏÒ°Ë ÒäËˈ
                                            j j ... j ... j
                                     12 s            p

                         äË°ˆº¯ÈmËÓ°ˆmº β i 1i 2...i q−1                  α i1i22...m...i p q 
                                                              j j ... j         j1 j ...m... j
                                             1 2      p −1
        
        ~ÈäˈÒ䈺m¹º°ãËÓËä¯ÈmËÓ°ˆm˹¯ÈmÈ«È°ˆ ªˆº°‚ääÈ n°ãÈÈË䩲Ë
mÒÓË}°¹º}ºˆº¯ºä‚m©¹ºãӫˈ°«°‚ääÒ¯ºmÈÓÒËÈ°ÈäºÈÓӺˈËÓϺ¯ÓºË¯ÈmËÓ
°ˆmº¯ÈmÓº°Òã Óº ( q − 1)( p − 1) °}È㫯өä¯ÈmËÓ°ˆmÈä