Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 337 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


wãËäËÓ©ËÓϺ¯ÓººÒ°Ò°ãËÓÒ«
ËÓÒË
°|ËmÒÓººÈÓÓºË°º¹º°ÈmãËÓÒËãÒÓˮӺ¹º}ÈκäÒÏȯ
äËÓºm
sÈ®Ëä ÏÈ}ºÓ ÒÏäËÓËÓÒ« ˺ }ºä¹ºÓËÓºm ¹¯Ò ÏÈäËÓË ÈÏÒ°È
°
=
=
4
1k
k
k
ii
gg
σ
¹¯Ò¹Ë¯Ë²ºËºÈÏÒ°È
},,,{
4321
gggg
}ÈÏÒ°
},,,{
4321
gggg
ºÈm°ÒããÒÓˮӺ°Ò°º¹º°ÈmãËÓÒ«
.),(),(),(
4
1
4
1
4
1
4
1
∑∑
====
==
kl
lk
l
j
k
i
l
l
l
j
k
k
k
iji
ggfggfggf
σσσσ
º°}ºã}}ºä¹ºÓËÓ©Ò°°ãËË人ºË}ÈmÓºmºäÈÏÒ°Ëm©
¯ÈÎÈ°«ãÒÓˮӺ˯ËÏ}ºä¹ºÓËÓ©m°ȯºäÈ}ºªÁÁÒÒËÓÈäÒ
°ãÎÈ ¹º¹È¯Ó©Ë ¹¯ºÒÏmËËÓÒ« ªãËäËÓºm äÈ¯Ò© ¹Ë¯Ë²ºÈ
S

º ¹º º¹¯ËËãËÓÒ ¯ ªº ºË} «mã«Ë°« ËÓϺ¯ºä Ò¹È
)2,0(

° sÈ®Ëä}ºä¹ºÓËÓ©ªººËÓϺ¯È
),(
lk
ggf
mÒ°²ºÓºäÈÏÒ°Ë
gggg
gggg
1234
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
====
;;;.
º °ãºmÒÏÈÈÒ
3),(;1),(
4231
==
ggfggf
Ò
0),(
=
lk
ggf
m
º°ÈãÓ©²°ãÈ«²È}Òäº¯ÈϺäÒ°}ºäÈ«äÈ¯ÒÈËÓϺ¯ÈÒäËË
0010
0003
0000
0000

¯|¹Ë¯ÈÒÒ°ËÓϺ¯ÈäÒ
{mºÒä©Ë ÓÒÎË º¹Ë¯ÈÒÒ ° ËÓϺ¯ÈäÒ mº m°Ë² °ãÈ«² ¯Ë ºº°ÓºmÈÓÒ«
ºº º ¯ËÏãÈºä }Èκ® ÒÏ ÓÒ² «mã«Ë°« È}ÎË ËÓϺ¯ { ¯Èä}Ȳ ÈÓÓºº }¯°È
ªÒm˯ÎËÓÒ«¹¯ËãÈÈ°«m}È˰mË¹¯ÈÎÓËÓÒ®
¯ÒãºÎËÓÒË
wãËäËӈ©ˆËÓϺ¯ÓººÒ°Ò°ãËÓÒ«



    cËËÓÒË             °|ËmÒÓºˆºÈÓӺ˰º¹º°ˆÈmãËÓÒËãÒÓˮӺ¹º}Èκä‚ÒÏȯ‚
                              äËӈºm
                              
                              sÈ®Ëä ÏÈ}ºÓ ÒÏäËÓËÓÒ« ˺ }ºä¹ºÓËӈºm ¹¯Ò ÏÈäËÓË ­ÈÏÒ°È
                                                     4
                                ‚°ˆ  g i′ =      ∑ σ ik g k ¹¯Ò¹Ë¯Ë²ºËºˆ­ÈÏÒ°È {g1, g 2 , g 3 , g 4 } }­ÈÏÒ°‚
                                                   k =1
                                {g1′ , g ′2 , g 3′ , g ′4 } ‘ºÈm°Òã‚ãÒÓˮӺ°ˆÒ°º¹º°ˆÈmãËÓÒ«
                                
                                                                     4             4                 4       4
                                               f ( g i′ , g ′j ) = f ( ∑ σ ik g k , ∑ σ lj g l ) = ∑∑ σ ik σ lj f ( g k , g l ) . 
                                                                    k =1          l =1              k =1l =1
                                
                                º°}ºã }‚}ºä¹ºÓËӈ©Ò°°ãË‚Ë人º­žË}ˆÈmÓºmºä­ÈÏÒ°Ëm©
                                ¯ÈÎÈ ˆ°«ãÒÓˮӺ˯ËÏ}ºä¹ºÓËӈ©m°ˆÈ¯ºäÈ}ºªÁÁÒÒËӈÈäÒ
                              °ã‚ÎȈ ¹º¹È¯Ó©Ë ¹¯ºÒÏmËËÓÒ« ªãËäËӈºm äȈ¯Ò© ¹Ë¯Ë²ºÈ S 
                              ˆº ¹º º¹¯ËËãËÓÒ  ¯ ªˆºˆ º­žË}ˆ «mã«Ëˆ°« ˆËÓϺ¯ºä ˆÒ¹È
                              (0,2) 
                              
                              
                         ° sÈ®Ëä}ºä¹ºÓËӈ©ªˆººˆËÓϺ¯È f ( g k , g l ) mÒ°²ºÓºä­ÈÏÒ°Ë
                         
                                                1                          0                          0                         0
                                                0                          1                          0                         0
                                     g1       =           ;    g2        =         ;       g3       =            ;   g4       =        .
                                          g     0                   g      0                    g     1                   g     0
                                                 0                          0                            0                      1
                                                                                       
                                º ‚°ãºmÒ  ÏÈÈÒ f ( g1 , g 3 ) = 1 ; f ( g 2 , g 4 ) = 3  Ò f ( g k , g l ) = 0  m
                                º°ˆÈã Ó©²°ã‚È«²‘È}Ò亭¯ÈϺäÒ°}ºäÈ«äȈ¯ÒȈËÓϺ¯ÈÒäËˈ
                                mÒ
                                                                                0 0 1 0
                                                                                0 0 0 3
                                                                                                     
                                                                                0 0 0 0
                                                                                0 0 0 0
             
             
             
             
¯|¹Ë¯ÈÒÒ°ˆËÓϺ¯ÈäÒ
         
         
         
         {mºÒä©Ë ÓÒÎË º¹Ë¯ÈÒÒ ° ˆËÓϺ¯ÈäÒ mº m°Ë² °ã‚È«² ˆ¯Ë­‚ ˆ º­º°ÓºmÈÓÒ«
ˆºº ˆº ¯Ëς㠈Ȉºä }Èκ® ÒÏ ÓÒ² «mã«Ëˆ°« ˆÈ}ÎË ˆËÓϺ¯ { ¯Èä}Ȳ ÈÓÓºº }‚¯°È
ªˆÒ‚ˆm˯ÎËÓÒ«¹¯ËãÈÈ ˆ°«m}È˰ˆmË‚¹¯ÈÎÓËÓÒ®