Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 344 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
ÈËÓϺ¯
][ jki
α
äÈ¯Ò
11
2
25
2
33
2
47
2
52
2
66
2
74
2
88
2
3
2
3
2
3
2
3
2
0
0
0
0
−−
−−
−−
−−
=

¯ËÓϺ¯©mËm}ãÒºmºä¹¯º°¯ÈÓ°mË
{ °ãÈË Ëm}ãÒºmÈ ¹¯º°¯ÈÓ°mÈ ËÓϺ¯© ºãÈÈ º¹ºãÓÒËãÓ©äÒ
°¹ËÒÁÒË°}ÒäÒ°mº®°mÈäÒº°ãºmãËÓÓ©äÒËäÁÈ}ºäº°}È㫯ӺË¹¯ºÒÏmËËÓÒË
Ë° ÒãÒÓˮө® ÁÓ}ÒºÓÈã È ¹ººä «mã«Ë°« mÈΩ }ºmȯÒÈÓÓ©ä ËÓϺ¯ºä
}ºä¹ºÓËÓ©}ºº¯ººmãºäÈÏÒ°Ë°ºm¹ÈÈ°}ºä¹ºÓËÓÈäÒäÈ¯Ò©¯ÈäÈwº
}ºmȯÒÈÓÓ©®ËÓϺ¯ÒÓºÈÓÈÏ©mÈ{ytljuntzjstuunzéq·nxrquzntovévu
º«°ÓÒäªÒ°mº®°mÈ°ãËÒä¹¯Òä˯ºä°ÈÓÈÏÒ°
},...,,{
21
n
ggg
m
E
n
Ò ˺ ÓË}ºº¯©® ªãËäËÓ
x
 «mã«Ò®°« ºÓºmÈãËÓÓ©ä ºÒÓ ¯ÈÏ }ºÓ¯ÈmȯÒÈÓÓ©ä
ËÓϺ¯ºä
ξ
i
 vm˯ÓËä ÁÓÈäËÓÈãÓ©® äË¯ÒË°}Ò® ËÓϺ¯
),(
jiij
gg
=
γ
° ËÓϺ¯ºä
ξ
i
¹ºãÒä
),(),(),(
jj
i
i
i
ji
i
ijj
gxgggg
====
ξ
ξ
ξ
γ
ξ

iÈÓÓºË¯ÈmËÓ°mººÏÓÈÈËºªãËäËÓ
x
ºÓºÏÓÈÓº²È¯È}˯ÒÏË°«m}ÈÎ
ºä ÈÏÒ°Ë
E
n
È}ÎË Ò }ºä¹ºÓËÓÈäÒ ºÒÓ ¯ÈÏ }ºmȯÒÈÓÓºº ËÓϺ¯È
ξ
j
 Ò°ãÈ
ξ
j
ÓÈÏ©mÈ°« }ºmȯÒÈÓÓ©äÒ }ºä¹ºÓËÓÈäÒ ªãËäËÓÈ
x
m ÈÏÒ°Ë
},...,,{
21
n
ggg
 Ò ºÓÒ
ºÓºÏÓÈÓº º¹¯ËËã«°« º©Ó©äÒ }ºÓ¯ÈmȯÒÈÓÓ©äÒ }ºä¹ºÓËÓÈäÒ ªãËäËÓÈ
x
m
°ÒãÓËm©¯ºÎËÓÓº°ÒäÈ¯Ò©¯ÈäÈÒÏ°Ò°Ëä©¯ÈmÓËÓÒ®
i
ijj
ξ
γ
ξ
=

È}Òä º¯ÈϺä m Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË Ò°ËÏÈË ¹¯ÒÓÒ¹ÒÈãÓÈ« ¯ÈÏÓÒÈ
äËÎ}ºmȯÒÈÓÓ©äÒÒ}ºÓ¯ÈmȯÒÈÓÓ©äÒÒÓË}°ÈäÒËÓϺ¯ºmrºãËËººmº¯º
Óº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë }ºmȯÒÈÓÓ©Ë Ò }ºÓ¯ÈmȯÒÈÓÓ©Ë }ºä¹ºÓËÓ© ªãËäËÓÈ
x
°ºm¹ÈÈ°ä˺¯Ëä
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                 1−1      2−5                    3
                                                                                                        0    −
                                                                                  2        2                     2
                                                                                 3−3      4−7                    3
                                                                                                        0    −
                                                                                    2       2                    2

                                  ȈËÓϺ¯ α i[ jk ] äȈ¯Ò‚                                  =                 
                                                                                 5−2      6−6            3
                                                                                                              0
                                                                                  2        2             2
                                                                                 7−4      8−8            3
                                                                                                              0
                                                                                    2       2            2
            
            
            
            
¯‘ËÓϺ¯©mËm}ãÒºmºä¹¯º°ˆ¯ÈÓ°ˆmË
        
        
        
        { °ã‚ÈË Ëm}ãÒºmÈ ¹¯º°ˆ¯ÈÓ°ˆmÈ ˆËÓϺ¯© º­ãÈÈ ˆ º¹ºãÓ҈Ëã Ó©äÒ
°¹ËÒÁÒË°}ÒäÒ°mº®°ˆmÈäÒº­‚°ãºmãËÓÓ©äÒˆËäÁÈ}ˆºäˆº°}È㫯Ӻ˹¯ºÒÏmËËÓÒË
Ë°ˆ  ­ÒãÒÓˮө® Á‚Ó}ÒºÓÈã È ¹ºˆºä‚ «mã«Ëˆ°« mÈΩ }ºmȯÒÈӈөä ˆËÓϺ¯ºä
}ºä¹ºÓËӈ©}ºˆº¯ººmã ­ºä­ÈÏÒ°Ë°ºm¹ÈÈ ˆ°}ºä¹ºÓËӈÈäÒäȈ¯Ò©€¯ÈäÈwˆºˆ
}ºmȯÒÈӈө®ˆËÓϺ¯ÒÓºÈÓÈÏ©mÈ ˆ{ytljuntzjst€uunzéq·nxrquzntovévu
        
        
        º«°ÓÒ䪈Ұmº®°ˆmÈ°ãË‚ Ò乯Òä˯ºä‚°ˆ ÈÓ­ÈÏÒ° {g1 , g 2 ,..., g n } mEn
Ò Ëº ÓË}ºˆº¯©® ªãËäËӈ x «mã« Ò®°« ºÓºmÈãËӈөä ºÒÓ ¯ÈÏ }ºÓˆ¯ÈmȯÒÈӈөä
ˆËÓϺ¯ºä ξ i  vm˯ÓËä Á‚ÓÈäËӈÈã Ó©® äˈ¯ÒË°}Ò® ˆËÓϺ¯ γ ij = ( g i , g j )  ° ˆËÓϺ¯ºä
ξ i ¹ºã‚Òä
                                       ξ j = γ ijξ i = ( g i , g j )ξ i = ( g iξ i , g j ) = ( x, g j ) 
            
            iÈÓӺ˯ÈmËÓ°ˆmººÏÓÈÈˈˆºªãËäËӈ xºÓºÏÓÈÓº²È¯È}ˆË¯Òςˈ°«m}ÈÎ
ºä ­ÈÏÒ°Ë E n  ˆÈ}ÎË Ò }ºä¹ºÓËӈÈäÒ ºÒÓ ¯ÈÏ }ºmȯÒÈӈӺº ˆËÓϺ¯È ξ j  Ò°ãÈ ξ j 
ÓÈÏ©mÈ ˆ°« }ºmȯÒÈӈөäÒ }ºä¹ºÓËӈÈäÒ ªãËäËӈÈ x m ­ÈÏÒ°Ë {g1 , g 2 ,..., g n }  Ò ºÓÒ
ºÓºÏÓÈÓº º¹¯ËËã« ˆ°« º­©Ó©äÒ }ºÓˆ¯ÈmȯÒÈӈөäÒ }ºä¹ºÓËӈÈäÒ ªãËäËӈÈ x m
°Òã‚ÓËm©¯ºÎËÓÓº°ˆÒäȈ¯Ò©€¯ÈäÈÒÏ°Ò°ˆËä©‚¯ÈmÓËÓÒ®
       
                                                                ξ j = γ ij ξ i 
       
       
       ‘È}Òä º­¯ÈϺä m Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË Ò°ËÏÈˈ ¹¯ÒÓÒ¹ÒÈã ÓÈ« ¯ÈÏÓÒÈ
äË΂}ºmȯÒÈӈөäÒÒ}ºÓˆ¯ÈmȯÒÈӈөäÒÒÓË}°ÈäÒˆËÓϺ¯ºmrºãËˈººmº¯ˆº
Óº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë }ºmȯÒÈӈөË Ò }ºÓˆ¯ÈmȯÒÈӈөË }ºä¹ºÓËӈ© ªãËäËӈÈ x
°ºm¹ÈÈ ˆ °äˆËº¯Ëä‚