Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 342 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
iÈÓÓÈ« º¹Ë¯ÈÒ« ÓÈÏ©mÈË°« xquunzéqévkjtqnu zntovéj wv méywwn qtlnrxvk
¯¹¹ÈÒÓË}°ºm¹º}ºº¯º®m©¹ºãÓ«Ë°«°ÒääË¯Ò¯ºmÈÓÒËËÓϺ¯Èm©Ëã«Ë°«}¯
ã©äÒ°}º}ÈäÒ
¯Òä˯
¯
N

11
)(
ii
ξ
ξ
=
N

}{
!2
1
122121
,,),(
iiiiii
ξ
ξ
ξ
+=
N

}{
!3
1
231123312132213321321
,,,,,,,,,,,,),,(
iiiiiiiiiiiiiiiiiiiii
ξ
ξ
ξ
ξ
ξ
ξ
ξ
+++++=
...

|¹Ë¯ÈÒ«°ÒääË¯Ò¯ºmÈÓÒ«È°º}ºäÒÓÒ¯Ë°«°äÓºÎËÓÒËä¹¯ÒËäÒäËË
äË°º°ãËÒ®¹º¯«º}Ë®°mÒ®°ÓÈÈãÈäÓºÎËÓÒËÈ¹ººä°ÒääË¯Ò¯ºmÈÓÒË
¯Òä˯
¯
)(
ji
η
ξ

ËãÒä  ËÓϺ¯È ¯¹¹ °º°º« ÒÏ
N
ÒÓË}°ºm ãÒº m˯²ÓÒ² ãÒº
ÓÒÎÓÒ²¹º°¯ºÒä¹Ëä¹Ë¯Ë°ÈÓºmº}ÒÓË}°ºmÈÓÓº®¯¹¹©
N!
m°ËmºÏäºÎÓ©²Óº
m©² ËÓϺ¯ºm ¹¯Ò¹Ò°Èm }Èκä ÒÏ ÓÒ² ÏÓÈ}
),...,,(
ï
21
)1(
N
kkk
 Ë
),...,,(
ï
21
N
kkk

Ò°ãºË°¹º¯«}ºmm¹Ë¯Ë°ÈÓºm}ËÒ°Ëã
},...,2,1{
N
ÒmºÏäËäÒ²°¯ËÓËËȯÒÁäËÒË
°}ºË { ¯ËÏãÈË ä© ¹ºãÒä ËÓϺ¯ ÈÓÒ°ÒääË¯ÒÓ©® ¹º m©¯ÈÓÓº® ¯¹¹Ë
ÒÓË}°ºm
iÈÓÓÈ« º¹Ë¯ÈÒ« ÓÈÏ©mÈË°« jsznétqévkjtqnu zntovéj wv méywwn qtlnrxvk
¯¹¹ÈÒÓË}°ºm¹º}ºº¯º®m©¹ºãÓ«Ë°«Èã˯ÓÒ¯ºmÈÓÒËËÓϺ¯ÈËã«Ë°«}mÈ
¯ÈÓ©äÒ°}º}ÈäÒ
¯Òä˯
¯
N

11
][
ii
ξ
ξ
=
N

}{
!2
1
122121
,,],[
iiiiii
ξ
ξ
ξ
=
N

}{
!3
1
231123312132213321321
,,,,,,,,,,,,],,[
iiiiiiiiiiiiiiiiiiiii
ξ
ξ
ξ
ξ
ξ
ξ
ξ
++=
...

|¹Ë¯ÈÒ« Èã˯ÓÒ¯ºmÈÓÒ« È°º }ºäÒÓÒ¯Ë°«° äÓºÎËÓÒËä ¹¯ÒËäÒäËË
äË°º°ãËÒ®¹º¯«º}Ë®°mÒ®°ÓÈÈãÈäÓºÎËÓÒËÈ¹ººäÈã˯ÓÒ¯ºmÈÓÒË
¯Òä˯
¯
ξ
η
[]
ij

~ÈäËÒäº}È}°ÒääË¯Ò¯ºmÈÓÒË}º°º°ÒääË¯ÒÓººËÓϺ¯ÈÈ}ÒÈã˯
ÓÒ¯ºmÈÓÒË°ÒääË¯ÒÓººÈËÓãËmº®ËÓϺ¯
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          iÈÓÓÈ« º¹Ë¯ÈÒ« ÓÈÏ©mÈˈ°« xquunzéqévkjtqnu zntovéj wv méywwn qtlnrxvk
€¯‚¹¹ÈÒÓË}°ºm¹º}ºˆº¯º®m©¹ºãӫˈ°«°Òääˈ¯Ò¯ºmÈÓÒˈËÓϺ¯Èm©Ëã«Ëˆ°«}¯‚
ã©äÒ°}º­}ÈäÒ
          
 ¯Òä˯
                        N         ξ (i1 ) = ξ i1 
 ¯
                                                             1
                             N           ξ (i1, i2 ) =        {ξ i , i + ξ i2 , i1 } 
                                                              2! 1 2
                                 
                                                               1
                             N           ξ (i1, i2 , i3 )   = {ξ i1, i2 , i3 + ξ i3 , i1, i2 + ξ i2 , i3 , i1 + ξ i2 , i1, i3 + ξ i3 , i2 , i1 + ξ i1, i3 , i2 } 
                                                                3!
                               ...         
       
       
       |¹Ë¯ÈÒ«°Òääˈ¯Ò¯ºmÈÓÒ«È°ˆº}ºä­ÒÓÒ¯‚ˈ°«°‚äÓºÎËÓÒË乯ÒËäÒäËˈ
äË°ˆº°ãË‚ Ò®¹º¯«º}Ë®°ˆmÒ®°ÓÈÈãÈ‚äÓºÎËÓÒËȹºˆºä°Òääˈ¯Ò¯ºmÈÓÒË
       
 ¯Òä˯                ξ (iη j ) 
 ¯
      
      
      {©ËãÒä ‚ ˆËÓϺ¯È ¯‚¹¹‚ °º°ˆº«‚  ÒÏ N ÒÓË}°ºm ãÒ­º m˯²ÓÒ² ãÒ­º
ÓÒÎÓÒ² ¹º°ˆ¯ºÒ乂ˆËä¹Ë¯Ë°ˆÈÓºmº}ÒÓË}°ºmÈÓÓº®¯‚¹¹©N!m°ËmºÏäºÎÓ©²Óº
                                                                                                    ï ( k 1 , k 2 ,..., k N )
m©² ˆËÓϺ¯ºm ¹¯Ò¹Ò°Èm }ÈÎºä‚ ÒÏ ÓÒ² ÏÓÈ} ( −1)                                                                          Ë ï (k1 , k 2 ,..., k N )  
Ұ㺭˰¹º¯«}ºmm¹Ë¯Ë°ˆÈÓºm}ËÒ°Ëã {1,2,..., N } ÒmºÏ äËäÒ²°¯ËÓËËȯÒÁäˈÒË
°}ºË { ¯Ëς㠈ȈË ä© ¹ºã‚Òä ˆËÓϺ¯ ÈӈҰÒääˈ¯ÒÓ©® ¹º m©­¯ÈÓÓº® ¯‚¹¹Ë
ÒÓË}°ºm
         
         iÈÓÓÈ« º¹Ë¯ÈÒ« ÓÈÏ©mÈˈ°« jsznétqévkjtqnu zntovéj wv méywwn qtlnrxvk
€¯‚¹¹ÈÒÓË}°ºm¹º}ºˆº¯º®m©¹ºãӫˈ°«È㠈˯ÓÒ¯ºmÈÓÒˈËÓϺ¯Èm©Ëã«Ëˆ°«}mÈ
¯ÈˆÓ©äÒ°}º­}ÈäÒ
         
 ¯Òä˯
                  N      ξ [i1] = ξ i1 
 ¯
                                                             1
                             N           ξ [i1, i2 ] =        {ξ i , i − ξ i2 , i1 } 
                                                              2! 1 2
                                 
                                                               1
                             N           ξ [i1, i2 , i3 ]   = {ξ i1, i2 , i3 + ξ i3 , i1, i2 + ξ i2 , i3 , i1 − ξ i2 , i1, i3 − ξ i3 , i2 , i1 − ξ i1, i3 , i2 } 
                                                                3!
                               ...         
         
         
         |¹Ë¯ÈÒ« È㠈˯ÓÒ¯ºmÈÓÒ« È°ˆº }ºä­ÒÓÒ¯‚ˈ°« ° ‚äÓºÎËÓÒËä ¹¯ÒËä ÒäËˈ
äË°ˆº°ãË‚ Ò®¹º¯«º}Ë®°ˆmÒ®°ÓÈÈãÈ‚äÓºÎËÓÒËȹºˆºäÈ㠈˯ÓÒ¯ºmÈÓÒË
         
 ¯Òä˯       ξ [i η j ] 
 ¯
         
         ~ÈäˈÒ䈺}È}°Òääˈ¯Ò¯ºmÈÓÒË}º°º°Òääˈ¯ÒÓººˆËÓϺ¯ÈˆÈ}ÒÈ㠈˯
ÓÒ¯ºmÈÓÒË°Òääˈ¯ÒÓººÈˈӂãËmº®ˆËÓϺ¯