Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 347 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


wãËäËÓ©ËÓϺ¯ÓººÒ°Ò°ãËÓÒ«
.323)3(1
4)3(351
425)3(2
55352
127)3(5
43755
12433
33453
222
22
122
12
22
2
212
22
112
12
21
2
221
22
121
12
12
2
211
22
111
12
11
2
222
21
122
11
22
1
212
21
112
11
21
1
221
21
121
11
12
1
211
21
111
11
11
1
=+=+=
=+=+=
=+=+=
==+=
=+=+=
==+=
=+=+=
==+=
γ
α
γ
αα
γ
α
γ
αα
γ
α
γ
αα
γ
α
γ
αα
γ
α
γ
αα
γ
α
γ
αα
γ
α
γ
αα
γ
α
γ
αα
È}Òäº¯ÈϺäËÓϺ¯
ij
k
α
ÒäËËäÈ¯Ò
31
41
54
43

{º¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°ËºËmÒÓºº
i
j
ij
ij
δ
γ
γ
==
º˰äËÎ}ºmÈ
¯ÒÈÓÓ©äÒ Ò }ºÓ¯ÈmȯÒÈÓÓ©äÒ ÒÓË}°ÈäÒ ÓË ÓÒ}È}º® ¯ÈÏÓÒ© ºÈ}ÎË°ãËË
ÒÏ ¯ÈmËÓ°mÈ
SS
=
1T
 m˯Ӻº m º¯ºÓº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë Ò º¹¯ËËãËÓÒ«
ËÓϺ¯ºm
¯ËÓϺ¯©mº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë
vºm¹ÈËÓÒË}ºmȯÒÈÓÓ©²Ò}ºÓ¯ÈmȯÒÈÓÓ©²ÒÓË}°ºmmº¯ºÓº¯äÒ¯ºmÈÓÓºä
ÈÏҰȲ Ëm}ãÒºmÈ ¹¯º°¯ÈÓ°mÈ ¹ºÏmºã«Ë mm˰Ò m ¯È°°äº¯ËÓÒË ¹¯ºËÓÓ©® }ãȰ°
ËÓϺ¯ºmº¹¯ËËãËÓÓ©²ºã}ºmÈ}Ò²ÈÏҰȲÒÓÈÏ©mÈË䩲nkrsqlvkuqzntovéjuq
imÈËm}ãÒºm©²ËÓϺ¯È°ÒÈ°«ºÒÓÈ}ºm©äÒ˰ãÒºÒÓÒÏÓÒ²äºÎË©
¹¯Ëº¯ÈϺmÈÓmºmº¯º®º¹Ë¯ÈÒ«äÒº¹°}ÈÓÒ«ÒãÒ¹ºÓ«Ò«ÒÓË}°ºmºªºääºÎÓº
mÈãÓË®Ëä¯È°°äÈ¯ÒmÈËm}ãÒºm©ËÓϺ¯©}È}ÒäËÒËãÒÓÒÎÓÒËÒÓË}°©
¯Òªºä¹¯ÈmÈ¹¯ÒË°«º¹°Ò°ääÒ¯ºmÈÓÒË¹º¹È¯Ë°ºm¹ÈÈÒ²}ºmȯÒÈÓ
Ó©²ÒÓË}°ºm
¯Ò ¹ºäºÒ Ëm}ãÒºm©² ËÓϺ¯ºm ºÓº ¹¯ºËäºÓ°¯Ò¯ºmÈ °m«Ï äËººm
ËÓϺ¯ÓººÒ°Ò°ãËÓÒ«Òȹ¹È¯ÈÈmË}º¯Óº®ÈãË¯©mº©Óºä¯Ë²ä˯ӺämË}º¯
Óºä¹¯º°¯ÈÓ°mË
E
3

¯ÒãºÎËÓÒË
wãËäËӈ©ˆËÓϺ¯ÓººÒ°Ò°ãËÓÒ«



                                                    α •11•1 = α •111γ 11 + α •121γ 21 =3 ⋅ 5− 4 ⋅ 3 = 3
                                                    α •12•1 = α •111γ 12 + α •121γ 22 = −3 ⋅ 3 + 4 ⋅ 2 = −1
                                                    α •21
                                                        •1 = α •11γ
                                                               2 11
                                                                    + α •221γ 21 =5 ⋅ 5 − 7 ⋅ 3 = 4
                                                    α •22
                                                        •1 = α •11γ
                                                               2 12
                                                                    + α •221γ 22 = 5 ⋅ (−3) + 7 ⋅ 2 = −1
                                                                                                                       
                                                    α •11•2 = α •112γ 11 + α •122γ 21 =2 ⋅ 5 − 3 ⋅ 5 = −5
                                                    α •12•2 = α •112γ 12 + α •122γ 22 = 2 ⋅ (−3) + 5 ⋅ 2 = 4
                                                    α •21
                                                        •2 = α •12γ
                                                               2 11
                                                                    + α •222γ 21 =1 ⋅ 5 + 3 ⋅ (−3) = −4
                                                    α •22
                                                        •2 = α •12γ
                                                               2 12
                                                                    + α •222γ 22 = 1 ⋅ (−3) + 3 ⋅ 2 = 3.
                                                                                     
                                                                         3 −1
                                                                        4 −1
                         ‘È}Ò亭¯ÈϺäˆËÓϺ¯ α ijk • ÒäËˈäȈ¯Ò‚       
                                                                        −5 4
                                                                        −4 3
             
             
       { º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë ºËmÒÓº ˆº γ ij = γ ij = δ ij ˆº˰ˆ äË΂}ºmÈ
¯ÒÈӈөäÒ Ò }ºÓˆ¯ÈmȯÒÈӈөäÒ ÒÓË}°ÈäÒ Óˈ ÓÒ}È}º® ¯ÈÏÓÒ© ˆº ˆÈ}ÎË °ãË‚ˈ
                                −1          T
ÒÏ ¯ÈmËÓ°ˆmÈ              S        = S         m˯Ӻº m º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë Ò º¹¯ËËãËÓÒ«
ˆËÓϺ¯ºm
        
        
        
        
¯‘ËÓϺ¯©mº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°Ë
       
       
       
       vºm¹ÈËÓÒË}ºmȯÒÈӈө²Ò}ºÓˆ¯ÈmȯÒÈӈө²ÒÓË}°ºmmº¯ˆºÓº¯äÒ¯ºmÈÓÓºä
­ÈÏҰȲ Ëm}ãÒºmÈ ¹¯º°ˆ¯ÈÓ°ˆmÈ ¹ºÏmºã«Ëˆ mm˰ˆÒ m ¯È°°äºˆ¯ËÓÒË ‚¹¯ºËÓÓ©® }ãȰ°
ˆËÓϺ¯ºmº¹¯ËËãËÓÓ©²ˆºã }ºmˆÈ}Ò²­ÈÏҰȲÒÓÈÏ©mÈË䩲nkrsqlvk€uqzntovéjuq
       
       
       imÈËm}ãÒºm©²ˆËÓϺ¯È°ÒˆÈ ˆ°«ºÒÓÈ}ºm©äÒ˰ãÒºÒÓÒÏÓÒ²äºÎˈ­©ˆ 
¹¯Ëº­¯ÈϺmÈÓmºmˆº¯º®º¹Ë¯ÈÒ«äÒº¹‚°}ÈÓÒ«ÒãÒ¹ºÓ«ˆÒ«ÒÓË}°ºmºªˆºä‚äºÎÓº
mÈã ÓË® Ëä¯È°°äȈ¯ÒmȈ Ëm}ãÒºm©ˆËÓϺ¯©}È}ÒäË ÒËãÒ ÓÒÎÓÒËÒÓË}°©
¯Òªˆºä¹¯Èmȹ¯Òˈ°«º¹‚°ˆÒˆ °‚ääÒ¯ºmÈÓÒ˹º¹È¯Ë°ºm¹ÈÈ Ò²}ºmȯÒÈӈ
Ó©²ÒÓË}°ºm
       
       ¯Ò ¹ºäºÒ Ëm}ãÒºm©² ˆËÓϺ¯ºm ‚º­Óº ¹¯ºËäºÓ°ˆ¯Ò¯ºmȈ  °m«Ï  äˈººm
ˆËÓϺ¯ÓººÒ°Ò°ãËÓÒ«Òȹ¹È¯ÈˆÈmË}ˆº¯Óº®ÈãË­¯©mº­©Óºäˆ¯Ë²ä˯ӺämË}ˆº¯
Ӻ乯º°ˆ¯ÈÓ°ˆmË E 3