Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 348 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
{mËËä¹¯ËmȯÒËãÓºm¯È°°äº¯ËÓÒË¯Ë²mÈãËÓÓ©®lqxréquqtjtztpËÓ
Ϻ¯
ijk
ε
º¹¯ËËã«Ëä©®mºm°Ë²º¯ºÓº¯äÒ¯ºmÈÓÓ©²ÈÏҰȲ¹º¹¯ÈmÒã

),,(ï
)1(
kji
ijk
=
ε
 Ë°ãÒ°¯ËÒÒ°Ëã
kji
,,
ÓË¯ÈmÓ©²

0
=
ijk
ε
 mº°ÈãÓ©²°ãÈ«²

),,( nmlï
 }È} Ò ¯ÈÓË ººÏÓÈÈË Ò°ãº Ë°¹º¯«}ºm m ¹Ë¯Ë°ÈÓºm}Ë Ò°Ëã
},,{ nml
°ä¹
{°Ëº  ËÓϺ¯È
ijk
ε
 ÈÓÒ°ÒääË¯ÒÓºº ¹º ãº® ¹È¯Ë ÒÓË}°ºm 
}ºä¹ºÓËÓºmÒÏ}ºº¯©²ºã}ºË°ÓËÓãËm©²¯Ò¯ÈmÓ©ËÒ¯Ò¯ÈmÓ©Ë
ËÒä°«mÓÈÈãËººË}
ijk
ε
¹¯Ëº¯ÈÏË°«¹¯Ò¹Ë¯Ë²ºËººÓººº¯º
Óº¯äÒ¯ºmÈÓÓºº ÈÏÒ°È m
E
3
}¯ºä }È} ¯ÒΩ }ºmȯÒÈÓÓ©® ËÓϺ¯ ~ȹÒËä
m©¯ÈÎËÓÒ«ã«}ºä¹ºÓËÓºmmÓºmºäÈÏÒ°Ëm«mÓºämÒË
==++
−−−=
=
εσσσεσσσσσσσσσ
σσ σ σσ σ σσ σ
σσσ
σσσ
σσσ
lmn li mj nk ijk l m n l m n l m n
lmn l mn lmn
ll l
mm m
nn n
123 231 312
132 213 321
123
123
123
det ,
ºm°mººË¯Ë¹º°mº®°mÈäº¹¯ËËãÒËã«ÈË

),,(
ï
)1(
nml
lmn
=
ε
 Ë°ãÒ°¯ËÒÒ°Ëã
l,m,n
ÓË¯ÈmÓ©²

0=
lmn
ε
 mº°ÈãÓ©²°ãÈ«²
¹º°}ºã} äÈ¯ÒÈ
σσσ
σσσ
σσσ
11 12 13
21 22 23
31 32 33
º¯ººÓÈãÓÈ« }È} äÈ¯ÒÈ ¹Ë¯Ë²ºÈ º ºÓºº
º¯ºÓº¯äÒ¯ºmÈÓÓººÈÏÒ°È}¯ºäÒËËº¹¯ËËãÒËã¯ÈmËÓ
±

º°}ºã}ºË}
ε
ijk
mÓºmºä¹¯ºÒÏmºãÓºäº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°ËÒäËË
¹¯Ò Ò°¹ºãϺmÈÓÓ©² ¹¯ÈmÒãȲ ¹¯Ëº¯ÈϺmÈÓÒ« ËÎË }ºä¹ºÓËÓ© ºÒmÒ°²ºÓºä
ºä©¹¯Ò²ºÒä}ÏÈ}ãËÓÒºªº¯Ë²mÈãËÓÓ©®Ëm}ãÒºmËÓϺ¯
ËÓϺ¯©Ò¹¯ºÒÏmËËÓÒ«mË}º¯ºm
º}ÈÎËä ˹˯ °m«Ï ËÓϺ¯Óºº ¹¯ºÒÏmËËÓÒ« ªãËäËÓºm ¹¯º°¯ÈÓ°mÈ
E
3
Ò
¹¯ºÒÏmËËÓÒ® mË}º¯ºm mmËËÓÓ©² m ÈÓÓºä ¹º°ºÒÒ °ä ¹ Ò ¹ {°Ë ÈÏÒ°©
¹º¹¯ËÎÓËäº¯ºÓº¯äÒ¯ºmÈÓÓ©Ë
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



            {mËË乯Ëmȯ҈Ëã Óºm¯È°°äºˆ¯ËÓÒˈ¯Ë²mÈãËӈө®lqxréquqtjtzt€pˆËÓ
Ϻ¯ ε ijk º¹¯ËËã«Ëä©®mºm°Ë²º¯ˆºÓº¯äÒ¯ºmÈÓÓ©²­ÈÏҰȲ¹º¹¯ÈmÒã‚

                                ε ijk = (−1) ï (i , j , k )    Ë°ãÒ°¯ËÒÒ°Ëã i , j , k Óˈ¯ÈmÓ©²
                                ε ijk = 0                     mº°ˆÈã Ó©²°ã‚È«²
       ï (l , m, n)  }È} Ò ¯ÈÓ Ë º­ºÏÓÈÈˈ Ұ㺠­Ë°¹º¯«}ºm m ¹Ë¯Ë°ˆÈÓºm}Ë Ò°Ëã
{l , m, n}  °ä¹ 
            
            {°Ëº ‚ ˆËÓϺ¯È ε ijk  ÈӈҰÒääˈ¯ÒÓºº ¹º ã ­º® ¹È¯Ë ÒÓË}°ºm 
}ºä¹ºÓËӈºmÒÏ}ºˆº¯©²ˆºã }º Ë°ˆ ÓËӂãËm©²ˆ¯Ò¯ÈmÓ©ËÒˆ¯Ò¯ÈmÓ©Ë  
            
            ­ËÒä°«mÓÈÈãˈºº­žË}ˆ ε ijk ¹¯Ëº­¯Èςˈ°«¹¯Ò¹Ë¯Ë²ºËºˆºÓººº¯ˆº
Óº¯äÒ¯ºmÈÓÓºº ­ÈÏÒ°È m E 3  } ¯‚ºä‚ }È} ˆ¯ÒΩ }ºmȯÒÈӈө® ˆËÓϺ¯ ~È¹Ò Ëä
m©¯ÈÎËÓÒ«ã«}ºä¹ºÓËӈºmmÓºmºä­ÈÏÒ°Ëm«mÓºämÒË
      
                             ε lmn
                                ′ = σ li σ mj σ nk εijk = σ l1σ m2 σ n 3 + σ l 2 σ m3σ n1 + σ l 3σ m1σ n 2 −
                                                             − σ l1σ m3σ n 2 − σ l 2 σ m1σ n 3 − σ l 3σ m2 σ n1 = 
                                                                   σ l1 σ l 2          σ l3
                                                             = det σ m1 σ m2           σ m3       ,
                                                                   σ n1 σ n 2          σ n3
                                           
ˆºm°mº º˯Ë ¹º°mº®°ˆmÈ亹¯ËËã҈Ëã«Èˈ
                          ′ = (−1) ï (l , m, n )  Ë°ãÒ°¯ËÒÒ°Ëãl,m,nÓˈ¯ÈmÓ©²
                          ε lmn
                        ε ′ lmn = 0             mº°ˆÈã Ó©²°ã‚È«²
            
                    σ 11 σ 12                         σ 13
¹º°}ºã }‚ äȈ¯ÒÈ σ 21 σ 22                         σ 23  º¯ˆººÓÈã ÓÈ« }È} äȈ¯ÒÈ ¹Ë¯Ë²ºÈ ºˆ ºÓºº
                    σ 31 σ 32                         σ 33
º¯ˆºÓº¯äÒ¯ºmÈÓÓºº­ÈÏÒ°È}¯‚ºä‚ ÒË˺¹¯ËËã҈Ëã ¯ÈmËÓ±
        
        º°}ºã }‚º­žË}ˆ εijk mÓºmºä¹¯ºÒÏmºã Ӻ亯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°ËÒäËˈ
 ¹¯Ò Ò°¹ºã ϺmÈÓÓ©² ¹¯ÈmÒãȲ ¹¯Ëº­¯ÈϺmÈÓÒ«  ˆË ÎË }ºä¹ºÓËӈ© ˆº Ò m Ò°²ºÓºä
ˆºä©¹¯Ò²ºÒä}ÏÈ}ã ËÓÒ ˆºªˆºˆ¯Ë²mÈãËӈө®Ëm}ãÒºmˆËÓϺ¯
        
        
        
        
‘ËÓϺ¯©Ò¹¯ºÒÏmËËÓÒ«mË}ˆº¯ºm
            
            
       º}ÈÎËä ˆË¹Ë¯  °m«Ï  ˆËÓϺ¯Óºº ¹¯ºÒÏmËËÓÒ« ªãËäËӈºm ¹¯º°ˆ¯ÈÓ°ˆmÈ E 3  Ò
¹¯ºÒÏmËËÓÒ® mË}ˆº¯ºm mmËËÓÓ©² m ÈÓÓºä ¹º°º­ÒÒ °ä ¹ Ò ¹  {°Ë ­ÈÏÒ°©
¹º¹¯ËÎÓË䂺¯ˆºÓº¯äÒ¯ºmÈÓÓ©Ë