Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 350 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
ÓËÏÈmÒ°«ËËºm©º¯Èº¯ºÓº¯äÒ¯ºmÈÓÓººÈÏÒ°ÈÒ°ãº
332211
η
ξ
η
ξ
η
ξ
η
ξ
++=
ii
vä
È}ÎË¹
{©«°ÓÒä ˺äË¯ÒË°}Ò® °ä©°ã ªºº ÒÓmȯÒÈÓÈ ººÏÓÈÈË人
kiki
ba
η
ξ
δ
=
),(
zÈ}ºm©©ÓÒ©ãÒmË}º¯©
a
Ò
b
m°ËÈÓÈ®Ë°«º¯ºÓº¯äÒ¯ºmÈÓ
Ó©®ÈÏÒ°m}ºº¯ºäÒ²}ºº¯ÒÓÈÓ©Ë¹¯Ë°ÈmãËÓÒ«°ººmË°mËÓÓºÒäËmÒ
a
0
0
Ò
b
b
cos
sin
ϕ
ϕ
0
 Ë
ϕ
ºã äËÎ
a
Ò
b
 ºÈ ÏÓÈËÓÒË ÒÓmȯÒÈÓÈ ¯ÈmÓº
(,) cos
ab a b
→→
=
ϕ
Òä©¹¯Ò²ºÒä } Áº¯äãË xrjs¹étvmv wévqoknlntq¹ knrzvévk
}ºº¯È«º©Óº¹¯ÒÓÒäÈË°«ÏÈ˺º¹¯ËËãËÓÒË
cÈ°°äº¯Òä˹˯mº¯ºË°ãÈÈËäºË
zÈ} ÓË¯Óº Ë äÈ¯ÒÈ
0
0
0
32233113
23322112
13311221
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
ÒäËË
ºã}º¯ÒÓËÏÈmÒ°Ò䩲 }ºä¹ºÓËÓÈÒÏ˺°ãËËº¹È¯ËmË}º¯ºm
a
Ò
b
m
E
3
äºÎË©¹º°ÈmãËÓm°ººmË°mÒË¯ËÒ®mË}º¯ººÏÓÈÈËä©®}È}
[,]
ab
→→
°}ºä
¹ºÓËÓÈäÒ
1221
3113
2332
η
ξ
η
η
ξ
η
ξ
η
ξ
η
ξ

{©«°ÓÒä ˺ °mº®°mÈ {º¹Ë¯m©² ÏÈäËÒä º Ò°ãº ÓËÏÈmÒ°Ò䩲 }ºä¹º
ÓËÓºm  }º°º°ÒääË¯ÒÓº® È°Ò ËÓϺ¯Óºº ¹¯ºÒÏmËËÓÒ« ªãËäËÓºm m °ãÈË ¯ÈÏ
ä˯Ӻ°Ò¹¯º°¯ÈÓ°mÈ
n
¯ÈmÓº
2
)1(
nn
¹º°}ºã}ªºË°Ò°ãº}ºä¹ºÓËÓºm°º«
Ò²mäÈ¯ÒËÓÈËËãÈmÓº®ÒȺÓÈã|°È°ãËËºzvsrvk
E
3
ªºÒ°ãº
°ºm¹ÈÈË ° ¯ÈÏä˯Ӻ° ¹¯º°¯ÈÓ°mÈ Ò zvsrv k
E
3
¹¯ºÒÏmËËÓÒ m² ªãËäËÓºm
äºÎÓº¹ººÓ©äº¯ÈϺä°ÈmÒm°ººmË°mÒË¯ËÒ®ªãËäËÓ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



ÓËÏÈmÒ°«Ë˺ˆm©­º¯Èº¯ˆºÓº¯äÒ¯ºmÈÓÓºº­ÈÏÒ°ÈҰ㺠ξ iηi = ξ1η1 + ξ 2η 2 + ξ 3η 3  vä
ˆÈ}Î˹ 
          
          {©«°ÓÒä ˺äˈ¯ÒË°}Ò® °ä©°ã ªˆºº ÒÓmȯÒÈӈÈ º­ºÏÓÈÈË人
 → →                                                                      →       →
( a , b ) = δ kiξ iηk zÈ}ºm©­©ÓÒ­©ãÒmË}ˆº¯© a Ò b m°ËÈÓÈ®ˈ°«º¯ˆºÓº¯äÒ¯ºmÈÓ
                                                                                                                                          →
                                                                                                                                          a

Ó©®­ÈÏÒ°m}ºˆº¯ºäÒ²}ºº¯ÒÓȈө˹¯Ë°ˆÈmãËÓÒ«°ººˆmˈ°ˆmËÓÓºÒäË ˆmÒ                                                                    
                                                                                                                                          0
                                                                                                                                          0
        →
        b cos ϕ
        →                                                          →          →
Ò       b sin ϕ  Ë ϕ  ‚ºã äË΂ a  Ò b  ‘ºÈ ÏÓÈËÓÒË ÒÓmȯÒÈӈÈ ¯ÈmÓº


            0
  → →           →      →
( a, b)= a             b cos ϕ  Ò ä© ¹¯Ò²ºÒä } Áº¯ä‚ãË xrjs¹étvmv wévqoknlntq¹ knrzvévk
}ºˆº¯È«º­©Óº¹¯ÒÓÒäÈˈ°«ÏÈ˺º¹¯ËËãËÓÒË
       
       
       cÈ°°äºˆ¯ÒäˆË¹Ë¯ mˆº¯ºË°ãÈÈËäºË
       
                                                                               0             ξ1η 2 − ξ 2η1 ξ1η3 − ξ 3η1
            zÈ} Óˈ¯‚Óº mÒˈ  äȈ¯ÒÈ                             ξ 2η1 − ξ1η 2              0       ξ 2η3 − ξ 3η 2  ÒäËˈ
                                                                         ξ 3η1 − ξ1η3        ξ 3η 2 − ξ 2η3       0
                                                                                                                           →       →
ˆºã }º ˆ¯Ò ÓËÏÈmÒ°Ò䩲 }ºä¹ºÓËӈÈ ÒÏ Ëº °ãË‚ˈ ˆº ¹È¯Ë mË}ˆº¯ºm a  Ò b  m E 3 
                                                                                                                        → →
äºÎˈ­©ˆ ¹º°ˆÈmãËÓm°ººˆmˈ°ˆmÒˈ¯ËˆÒ®mË}ˆº¯º­ºÏÓÈÈËä©®}È} [ a , b ] °}ºä
           ξ 2η3 − ξ 3η 2
¹ºÓËӈÈäÒ ξ 3η1 − ξ1η3 
           ξ1η 2 − ξ 2η1
        
        {©«°ÓÒä ˺ °mº®°ˆmÈ {º¹Ë¯m©² ÏÈäˈÒä ˆº Ұ㺠ÓËÏÈmÒ°Ò䩲 }ºä¹º
ÓËӈºm ‚ }º°º°Òääˈ¯ÒÓº® È°ˆÒ ˆËÓϺ¯Óºº ¹¯ºÒÏmËËÓÒ« ªãËäËӈºm m °ã‚ÈË ¯ÈÏ
                                (n − 1)n
ä˯Ӻ°ˆÒ¹¯º°ˆ¯ÈÓ°ˆmÈ n¯ÈmÓº          ¹º°}ºã }‚ªˆºË°ˆ Ò°ãº}ºä¹ºÓËӈºm°ˆº«
                                   2
Ò²mäȈ¯ÒËÓÈËËãÈmÓº®ÒȺÓÈã |ˆ° È°ãË‚ˈˆºzvsrvk E 3 ªˆºÒ°ãº
°ºm¹ÈÈˈ ° ¯ÈÏä˯Ӻ°ˆ  ¹¯º°ˆ¯ÈÓ°ˆmÈ Ò zvsrv k E 3  ¹¯ºÒÏmËËÓÒ  m‚² ªãËäËӈºm
äºÎÓº¹ºº­Ó©äº­¯ÈϺä°ˆÈm҈ m°ººˆmˈ°ˆmÒˈ¯ËˆÒ®ªãËäËӈ