Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 351 стр.

UptoLike

Составители: 

Рубрика: 

¯ÒãºÎËÓÒË


wãËäËÓ©ËÓϺ¯ÓººÒ°Ò°ãËÓÒ«
{ºmº¯©²ËÒä°«ºÒäËäË°º°ººÓºËÓÒ«
kjijki
ba
η
ξ
ε
=
],[
iË®°
mÒËãÓºÓȹ¯Òä˯ã«
i

.
2332
331332313213131
321232212212121
3111321112111111
η
ξ
η
ξ
η
ξ
εη
ξ
εη
ξ
ε
η
ξ
εη
ξ
εη
ξ
ε
η
ξ
εη
ξ
εη
ξ
εη
ξ
ε
=
=+++
++++
+++=
kjjk
{¯ËÒ²¹º}ÈÎËäÒÓmȯÒÈÓÓº°ËÓϺ¯È
kjijki
η
ξ
εκ
=
¹¯Ò¹Ë¯Ë²ºËºº
Óººº¯ºÓº¯äÒ¯ºmÈÓÓººÈÏÒ°È}¯ºäm
E
3
°ªº°ººÓºËÓÒËmÓºmºäº¯
ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë
kjijki
η
ξ
εκ
=
ºÈmÒ°²ºÓºäÈÏÒ°Ë°¹¯ÈmËãÒm©¯È
mËÓ°mÈ
lmkljmijksis
η
ξ
σσεκσ
=

äÓºÎÒmºËÈ°Ò¹º°ãËÓ˺¯ÈmËÓ°mÈÓÈËÓϺ¯
σ
qi
Ò°m˯Óm¹¯ºÒÏËÓÒ«
¹º ÒÓË}°
i
 ¹ºãÒä
lmijkkljmqisisqi
η
ξ
εσσσκσσ
=
 Óº
qsqssisqi
κκδκσσ
==
 È
ijkkljmqiqml
εσσσε
=
¹º°}ºã}ËÓϺ¯
ijk
ε
ÒÓmȯÒÈÓËÓ¹¯Ò¹Ë¯Ë²ºËººÓººº¯º
Óº¯äÒ¯ºmÈÓÓºº ÈÏÒ°È } ¯ºä vã˺mÈËãÓº
lmimli
η
εκ
=
 ºÒºÏÓÈÈË
ÒÓmȯÒÈÓÓº°ªººªãËäËÓÈºÓº°ÒËãÓºÏÈäËÓ©ÈÏÒ°È
{©«°ÓÒä ÓÈ}ºÓË ˺äË¯ÒË°}Ò® °ä©°ã mË}º¯È
[,]
ab
→→
 ~ÈäËÒä º ã«
ã©²mË}º¯ºm
a
Ò
b
äºÎÓºm©¯Èº¯ºÓº¯äÒ¯ºmÈÓÓ©®ÈÏÒ°m
3
E
m}ºº¯ºäÒ²
}ºº¯ÒÓÈÓ©Ë ¹¯Ë°ÈmãËÓÒ« ÒäË °ººmË°mËÓÓº
0
0
a
Ò
0
bb
→→
cos sin
T
ϕϕ
Ë
ϕ
ºãäËÎ
a
Ò
b

ºÈ ÏÓÈËÓÒË ¹Ë¯mºº }ºä¹ºÓËÓÈ
[,]
ab
→→
Ë°
ab
→→
sin
ϕ
 m º m¯Ëä« }È}
º°ÈãÓ©Ë}ºä¹ºÓËÓ©ÓãËm©ËÒ¹ºãÒãÈ°Áº¯äãÈknrzvétvmvwévqoknlntq¹¹¯Ò
ÓÒäÈËäÈ«º©ÓºÏÈ˺º¹¯ËËãËÓÒË
È}Òä º¯ÈϺä äºÎÓº ÏÈ}ãÒ º mmËËÓÓ©Ë m }¯°Ë mË}º¯Óº® ÈãË¯©
º¹Ë¯ÈÒÒ°}È㫯ӺºÒmË}º¯Óºº¹¯ºÒÏmËËÓÒ®ÈÏÒ¯°«ÓËºã}ºÓÈÙÒ²¹ºãËÏ
Óº°Òã«¹¯ÒãºÎËÓÒ®µÓºÒº¯ÈÎÈÒÓmȯÒÈÓÓ©Ë°mº®°mÈËÓϺ¯Óºº¹¯ºÒÏmËË
ÓÒ«ªãËäËÓºmËm}ãÒºmÈ¹¯º°¯ÈÓ°mÈ¹¯Ò¹Ë¯Ë²ºÈ²äËÎº¯ºÓº¯äÒ¯ºmÈÓÓ©äÒÈ
ÏÒ°ÈäÒ
{ÏÈ}ãËÓÒË¹º}ÈÎËäºËÓϺ¯ÓÈ«°ÒämºãÒ}ÈäºÎË©ªÁÁË}ÒmÓºÒ°
¹ºãϺmÈÓÈÒã«ºãËË°ãºÎÓ©²}ºÓ°¯}Ò®mË}º¯Óº®ÈãË¯©sȹ¯Òä˯
¯ÒãºÎËÓÒË
wãËäËӈ©ˆËÓϺ¯ÓººÒ°Ò°ãËÓÒ«



                                                                                                          → →
             {ºmˆº¯©²‚­ËÒä°«ˆºÒäË ˆäË°ˆº°ººˆÓº ËÓÒ« [ a , b ]i = ε ijk ξ jηk iË®°ˆ
m҈Ëã ÓºÓȹ¯Òä˯ã«i                      
                                         ε 1 jk ξ jηk = ε 111ξ1η1 + ε 112ξ1η 2 + ε 113ξ1η3 +
                                                        + ε 121ξ 2η1 + ε 122ξ 2η 2 + ε 123ξ 2η3 +
                                                                                                           
                                                         + ε 131ξ 3η1 + ε 132ξ 3η 2 + ε 133ξ 3η3 =
                                                         = ξ 2η3 − ξ 3η 2 .
             
             {ˆ¯Ëˆ Ò²¹º}ÈÎËäÒÓmȯÒÈӈӺ°ˆ ˆËÓϺ¯È κ i = ε ijk ξ jη k ¹¯Ò¹Ë¯Ë²ºËºˆº
Óººº¯ˆºÓº¯äÒ¯ºmÈÓÓºº­ÈÏÒ°È}¯‚ºä‚m E 3 ‚°ˆ ªˆº°ººˆÓº ËÓÒËmÓºmºäº¯
ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°Ë κ i′ = ε ijk
                                 ′ ξ ′jηk′ ˆºÈmÒ°²ºÓºä­ÈÏÒ°Ë­‚‚ˆ°¹¯ÈmËãÒm©¯È
                     ′ σ jmσ klξ mηl 
mËÓ°ˆmÈ σ isκ s = ε ijk
       
       äÓºÎÒmº­ËÈ°ˆÒ¹º°ãËÓ˺¯ÈmËÓ°ˆmÈÓȈËÓϺ¯ σ qi Ò°m˯ӂm¹¯ºÒÏmËËÓÒ«
                                                         ′ ξ mη l  Óº σ qiσ isκ s = δ qsκ s = κ q  È
¹º ÒÓË}°‚ i ¹ºã‚Òä σ qiσ isκ s = σ qiσ jmσ kl ε ijk
                       ′ ¹º°}ºã }‚ˆËÓϺ¯ ε ijk ÒÓmȯÒÈӈËÓ¹¯Ò¹Ë¯Ë²ºËºˆºÓººº¯ˆº
ε qml = σ qiσ jmσ kl ε ijk
Óº¯äÒ¯ºmÈÓÓºº ­ÈÏÒ°È } ¯‚ºä‚ vã˺mȈËã Óº κ i = ε iml ξ mη l  ˆº Ò ºÏÓÈÈˈ
ÒÓmȯÒÈӈӺ°ˆ ªˆººªãËäËӈȺˆÓº°ÒˆËã ÓºÏÈäËÓ©­ÈÏÒ°È
       
                                                                                                         → →
             {©«°ÓÒä ÓÈ}ºÓË ˺äˈ¯ÒË°}Ò® °ä©°ã mË}ˆº¯È [ a , b ]  ~ÈäˈÒä ˆº ã«
                            →        →
ã ­©²mË}ˆº¯ºm a Ò b äºÎÓºm©­¯Èˆ º¯ˆºÓº¯äÒ¯ºmÈÓÓ©®­ÈÏÒ°m E 3 m}ºˆº¯ºäÒ²
                                                                                                                                   0
                                                                                                                                   →
}ºº¯ÒÓȈөË                  ¹¯Ë°ˆÈmãËÓÒ«                 ÒäË ˆ              mÒ        °ººˆmˈ°ˆmËÓÓº                      a            Ò
                                                                                                                                   0
                                         T
         →                →                                                   →       →
    0    b cos ϕ           b sin ϕ           Ëϕ‚ºãäË΂ a Ò b 

             
                                                                              → →                   →     →
             ‘ºÈ ÏÓÈËÓÒË ¹Ë¯mºº }ºä¹ºÓËӈÈ [ a , b ]  Ë°ˆ  a                                     b sin ϕ  m ˆº m¯Ëä« }È}
º°ˆÈã Ó©Ë}ºä¹ºÓËӈ©ӂãËm©ËÒ¹ºã‚ÒãÈ° Áº¯ä‚ãÈknrzvétvmvwévqoknlntq¹¹¯Ò
ÓÒäÈËäÈ«º­©ÓºÏÈ˺º¹¯ËËãËÓÒË
       
       ‘È}Òä º­¯ÈϺä äºÎÓº ÏÈ}ã ҈  ˆº mmËËÓÓ©Ë m }‚¯°Ë mË}ˆº¯Óº® ÈãË­¯©
º¹Ë¯ÈÒÒ°}È㫯ӺºÒmË}ˆº¯Óºº¹¯ºÒÏmËËÓÒ®­ÈÏÒ¯‚ ˆ°«Óˈºã }ºÓÈÙÒ²¹ºãËÏ
Óº°ˆÒ㫹¯ÒãºÎËÓÒ®µÓºÒºˆ¯ÈÎÈ ˆÒÓmȯÒÈӈөË°mº®°ˆmȈËÓϺ¯Óºº¹¯ºÒÏmËË
ÓÒ«ªãËäËӈºmËm}ãÒºmȹ¯º°ˆ¯ÈÓ°ˆmȹ¯Ò¹Ë¯Ë²ºȲäË΂º¯ˆºÓº¯äÒ¯ºmÈÓÓ©äÒ­È
ÏÒ°ÈäÒ
       
       
       {ÏÈ}ã ËÓÒ˹º}ÈÎË䈺ˆËÓϺ¯ÓÈ«°ÒämºãÒ}ÈäºÎˈ­©ˆ ªÁÁË}ˆÒmÓºÒ°
¹ºã ϺmÈÓÈÒã«­ºãËË°ãºÎÓ©²}ºÓ°ˆ¯‚}Ò®mË}ˆº¯Óº®ÈãË­¯©sȹ¯Òä˯