Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 355 стр.

UptoLike

Составители: 

Рубрика: 

cË}ºäËÓËäÈ«ãÒ˯È¯È


{©¯ÈÎËÓÒË mË}º¯Óºº ¹¯ºÒÏmËËÓÒ« mË}º¯ºm m º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË
}ºº¯ÒÓÈ
{©¯ÈÎËÓÒË°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«mË}º¯ºmm}ºº¯ÒÓÈȲ
{©¯ÈÎËÓÒË°äËÈÓÓºº¹¯ºÒÏmËËÓÒ«mË}º¯ºmm}ºº¯ÒÓÈȲ
{©¯ÈÎËÓÒË °}È㫯Ӻº ¹¯ºÒÏmËËÓÒ« mË}º¯ºm m º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË
}ºº¯ÒÓÈ
{©¯ÈÎËÓÒË °äËÈÓÓºº ¹¯ºÒÏmËËÓÒ« mË}º¯ºm m º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË
}ºº¯ÒÓÈ
{©¯ºÎËÓÓÈ«äÈ¯ÒÈ
{©¯ºÎËÓÓ©ËãÒÓÒÒmº¯ºº¹º¯«}È¯
{©¯ºÎËÓÓ©Ë¹ºm˯²Óº°Òmº¯ºº¹º¯«}È¯
¥
˺äË¯ÒË°}Ò®°ä©°ãäºã«º¹¯ËËãÒËã«ÈÁÁÒÓÓºº¹¯Ëº¯ÈϺmÈÓÒ«
˺äË¯ÒË°}Ò®°ä©°ãÏÓÈ}Èº¹¯ËËãÒËã«ÈÁÁÒÓÓºº¹¯Ëº¯ÈϺmÈÓÒ«
ҹ˯ºãÈ
ҹ˯ºãÒË°}Ò®¹È¯ÈºãºÒ
ҹ˯ºãÒË°}Ò®ÒãÒÓ¯
ҹ˯¹ãº°}º°mãÒÓˮӺä¹¯º°¯ÈÓ°mË
ãÈmÓ©®mË}º¯¹ãº°}º°Ò
¯¹¹È
¦
imº®ÓºËmË}º¯ÓºË¹¯ºÒÏmËËÓÒË¯
imº®°mËÓÓºËãÒÓˮӺË¹¯º°¯ÈÓ°mº
im¹ºãº°Ó©®ҹ˯ºãºÒ
iË®°mÒ«°ãÒÓˮөäÒº¹Ë¯Èº¯ÈäÒ
iË®°mÒ«°ãÒÓˮөäÒº¹Ë¯Èº¯ÈäÒmäÈ¯ÒÓº®Áº¯äË
iË˯äÒÓÈÓäÈ¯Ò©ºÒº¹º¯«}È
iË˯äÒÓÈÓäÈ¯Ò©
n
º¹º¯«}È
iÒȺÓÈãÓ©®mÒ}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
iÒ¯Ë}º¯ÒÈãÓºË°mº®°mºҹ˯ºã©¯
iÒ¯Ë}º¯ÒÈãÓºË°mº®°mº¹È¯Èºã©¯
iÒ¯Ë}º¯ÒÈãÓºË°mº®°mºªããÒ¹°È¯
iÒ°¹Ë¯°Ò«ª¯äÒºmÈº¹Ë¯Èº¯È
iº¹ºãÓÒËãÓ©®äÒÓº¯
iº¹ºãÓÒËãÓ©®äÒÓº¯ªãËäËÓÈäÈ¯Ò©
§
pm}ãÒºmº¹¯º°¯ÈÓ°mº
pÒÓÒÓÈ«äÈ¯ÒÈ
pÒÓÒÓ©®º¹Ë¯Èº¯
cË}ºäËÓ‚ËäÈ«ã҈˯Ȉ‚¯È




            {©¯ÈÎËÓÒË mË}ˆº¯Óºº ¹¯ºÒÏmËËÓÒ« mË}ˆº¯ºm m º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË
                  }ºº¯ÒÓȈ
            {©¯ÈÎËÓÒË°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«mË}ˆº¯ºmm}ºº¯ÒÓȈȲ
            {©¯ÈÎËÓÒË°äË ÈÓÓºº¹¯ºÒÏmËËÓÒ«mË}ˆº¯ºmm}ºº¯ÒÓȈȲ
            {©¯ÈÎËÓÒË °}È㫯Ӻº ¹¯ºÒÏmËËÓÒ« mË}ˆº¯ºm m º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË
                  }ºº¯ÒÓȈ
            {©¯ÈÎËÓÒË °äË ÈÓÓºº ¹¯ºÒÏmËËÓÒ« mË}ˆº¯ºm m º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË
                  }ºº¯ÒÓȈ
            {©¯ºÎËÓÓÈ«äȈ¯ÒÈ
            {©¯ºÎËÓÓ©ËãÒÓÒÒmˆº¯ºº¹º¯«}ȁ¯
            {©¯ºÎËÓө˹ºm˯²Óº°ˆÒmˆº¯ºº¹º¯«}ȁ¯
            
            
            

            ¥
            
            €Ëºäˈ¯ÒË°}Ò®°ä©°ã亂㫺¹¯ËËã҈Ëã«ÈÁÁÒÓÓºº¹¯Ëº­¯ÈϺmÈÓÒ«
            €Ëºäˈ¯ÒË°}Ò®°ä©°ãÏÓÈ}Ⱥ¹¯ËËã҈Ëã«ÈÁÁÒÓÓºº¹¯Ëº­¯ÈϺmÈÓÒ«
            €Ò¹Ë¯­ºãÈ
            €Ò¹Ë¯­ºãÒË°}Ò®¹È¯È­ºãºÒ
            €Ò¹Ë¯­ºãÒË°}Ò®ÒãÒÓ¯
            €Ò¹Ë¯¹ãº°}º°ˆ mãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË
            €ãÈmÓ©®mË}ˆº¯¹ãº°}º°ˆÒ
            €¯‚¹¹È
            
            

            ¦
            
            imº®ÓºËmË}ˆº¯ÓºË¹¯ºÒÏmËËÓÒˁ¯
            imº®°ˆmËÓÓºËãÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº
            im‚¹ºãº°ˆÓ©®ҹ˯­ºãºÒ
            iË®°ˆmÒ«°ãÒÓˮөäÒº¹Ë¯Èˆº¯ÈäÒ
            iË®°ˆmÒ«°ãÒÓˮөäÒº¹Ë¯Èˆº¯ÈäÒmäȈ¯ÒÓº®Áº¯äË
            iˈ˯äÒÓÈӈäȈ¯Ò©ºÒº¹º¯«}È
            iˈ˯äÒÓÈӈäȈ¯Ò©nº¹º¯«}È
            iÒȺÓÈã Ó©®mÒ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ
            iÒ¯Ë}ˆº¯ÒÈã Ӻ˰mº®°ˆmºҹ˯­ºã©¯
            iÒ¯Ë}ˆº¯ÒÈã Ӻ˰mº®°ˆmº¹È¯È­ºã©¯
            iÒ¯Ë}ˆº¯ÒÈã Ӻ˰mº®°ˆmºªããÒ¹°È¯
            iÒ°¹Ë¯°Ò«ª¯ä҈ºmȺ¹Ë¯Èˆº¯È
            iº¹ºãÓ҈Ëã Ó©®äÒÓº¯
            iº¹ºãÓ҈Ëã Ó©®äÒÓº¯ªãËäËӈÈäȈ¯Ò©
            
            

            §
            
            pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº
            pÒÓÒÓÈ«äȈ¯ÒÈ
            pÒÓÒÓ©®º¹Ë¯Èˆº¯