Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 357 стр.

UptoLike

Составители: 

Рубрика: 

cË}ºäËÓËäÈ«ãÒ˯È¯È


zºº¯ÒÓÈ©mË}º¯È
zºº¯ÒÓÈ©ªãËäËÓÈãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
zºä¹ºÏÒÒ«º¹Ë¯Èº¯ºm
zºä¹ºÓËÓ©mË}º¯È
zºº¯ÒÓÈ©mË}º¯È
z¯Ò˯ҮvÒãmË°¯È

ÒÓË®ÓÈ«ÏÈmÒ°Ò亰mË}º¯ºm
ÒÓË®ÓÈ«ÏÈmÒ°Ò亰ªãËäËÓºmãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
ÒÓË®ÓÈ«}ºäÒÓÈÒ«mË}º¯ºm
ÒÓË®ÓÈ«}ºäÒÓÈÒ«ªãËäËÓºmãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
ÒÓË®ÓÈ«ÓËÏÈmÒ°Ò亰mË}º¯ºm
ÒÓË®ÓÈ«ÓËÏÈmÒ°Ò亰ªãËäËÓºmãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
ÒÓË®ÓÈ«ººãº}ÈªãËäËÓºmãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
ÒÓˮӺËÓ˯ÈmËÓ°mº
ÒÓˮӺË¹¯º°¯ÈÓ°mº
ÒÓˮӺË¹¯º°¯ÈÓ°mºãÒÓˮө²º¹Ë¯Èº¯ºm
ÒÓˮӺË¹¯º°¯ÈÓ°mºãÒÓˮө²ÁÓ}ÒºÓÈãºm
ÒÓˮө®º¹Ë¯Èº¯
ÒÓˮө®º¹Ë¯Èº¯ÓÈ¹ãº°}º°Ò
ÒÓË®ÓÈ«Áº¯äÈ
ÒÓˮө®ÁÓ}ÒºÓÈã
ÒÓÒ«m¹¯º°¯ÈÓ°mË
ÒÓÒ«mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
ÒÓÒ«ÓÈ¹ãº°}º°Ò
®
lÈ¯ÒÈ
lÈ¯ÒÈÒãÒÓˮӺºÁÓ}ÒºÓÈãÈ
lÈ¯ÒÈ¯ÈäÈ
lÈ¯ÒÈ}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
lÈ¯ÒÈãÒÓˮӺºº¹Ë¯Èº¯È
lÈ¯ÒÈãÒÓˮӺººº¯ÈÎËÓÒ«
lÈ¯ÒÈãÒÓˮӺºº¹Ë¯Èº¯ÈÓÈ¹ãº°}º°Ò
lÈ¯ÒÈ¹Ë¯Ë²ºÈººÓº®°Ò°Ëä©}ºº¯ÒÓÈ}¯º®
lÈ¯ÒÈ¹Ë¯Ë²ºÈººÓººÈÏÒ°È}¯ºämãÒÓˮӺä¹¯º°¯ÈÓ°mË
lÈ¯ÒÈªãËäËÓȯө²¹¯Ëº¯ÈϺmÈÓÒ®
lËºÈ°°È
lÒÓº¯
k
º¹º¯«}È
cË}ºäËÓ‚ËäÈ«ã҈˯Ȉ‚¯È




            zºº¯ÒÓȈ©mË}ˆº¯È
            zºº¯ÒÓȈ©ªãËäËӈÈãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
            zºä¹ºÏÒÒ«º¹Ë¯Èˆº¯ºm
            zºä¹ºÓËӈ©mË}ˆº¯È
            zºº¯ÒÓȈ©mË}ˆº¯È
            z¯ÒˆË¯Ò®vÒã mË°ˆ¯È
            
            
            

            ­
            
            ÒÓË®ÓÈ«ÏÈmÒ°Ò亰ˆ mË}ˆº¯ºm
            ÒÓË®ÓÈ«ÏÈmÒ°Ò亰ˆ ªãËäËӈºmãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
            ÒÓË®ÓÈ«}ºä­ÒÓÈÒ«mË}ˆº¯ºm
            ÒÓË®ÓÈ«}ºä­ÒÓÈÒ«ªãËäËӈºmãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
            ÒÓË®ÓÈ«ÓËÏÈmÒ°Ò亰ˆ mË}ˆº¯ºm
            ÒÓË®ÓÈ«ÓËÏÈmÒ°Ò亰ˆ ªãËäËӈºmãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
            ÒÓË®ÓÈ«º­ºãº}ȪãËäËӈºmãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
            ÒÓˮӺËÓ˯ÈmËÓ°ˆmº
            ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº
            ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmºãÒÓˮө²º¹Ë¯Èˆº¯ºm
            ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmºãÒÓˮө²Á‚Ó}ÒºÓÈãºm
            ÒÓˮө®º¹Ë¯Èˆº¯
            ÒÓˮө®º¹Ë¯Èˆº¯Óȹ㺰}º°ˆÒ
            ÒÓË®ÓÈ«Áº¯äÈ
            ÒÓˮө®Á‚Ó}ÒºÓÈã
            ÒÓÒ«m¹¯º°ˆ¯ÈÓ°ˆmË
            ÒÓÒ«mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ
            ÒÓÒ«Óȹ㺰}º°ˆÒ
            
            
            

            ®
            
            lȈ¯ÒÈ
            lȈ¯ÒÈ­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãÈ
            lȈ¯ÒÈ€¯ÈäÈ
            lȈ¯ÒÈ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ
            lȈ¯ÒÈãÒÓˮӺºº¹Ë¯Èˆº¯È
            lȈ¯ÒÈãÒÓˮӺººˆº­¯ÈÎËÓÒ«
            lȈ¯ÒÈãÒÓˮӺºº¹Ë¯Èˆº¯ÈÓȹ㺰}º°ˆÒ
            lȈ¯Òȹ˯˲ºÈºˆºÓº®°Ò°ˆËä©}ºº¯ÒÓȈ}¯‚º®
            lȈ¯Òȹ˯˲ºÈºˆºÓºº­ÈÏÒ°È}¯‚ºä‚mãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË
            lȈ¯ÒȪãËäËӈȯө²¹¯Ëº­¯ÈϺmÈÓÒ®
            lˈº€È‚°°È
            lÒÓº¯kº¹º¯«}È