Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 356 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
©
~ȹҰËÓϺ¯ºm¯
ª
jÏäËÓËÓÒË}ºä¹ºÓËÓºmÒãÒÓˮӺºÁÓ}ÒºÓÈãÈ¹¯Ò°äËÓËÈÏÒ°È
jÏäËÓËÓÒË}ºä¹ºÓËÓºm}mȯÈÒÓººÁÓ}ÒºÓÈãÈ¹¯Ò°äËÓËÈÏÒ°È
jÏäËÓËÓÒË}ºä¹ºÓËÓºmãÒÓˮӺºÁÓ}ÒºÓÈãÈ¹¯Ò°äËÓËÈÏÒ°È
jÏäËÓËÓÒË}ºº¯ÒÓÈº}Ò¹¯Ò°äËÓËÈÏÒ°È
jÏäËÓËÓÒË}ºº¯ÒÓÈªãËäËÓÈãÒÓˮӺº¹¯º°¯ÈÓ°mÈ¹¯Ò°äËÓËÈÏÒ°È
jÏäËÓËÓÒËäÈ¯Ò©ãÒÓˮӺºº¹Ë¯Èº¯È¹¯Ò°äËÓËÈÏÒ°È
jϺ亯ÁÒÏä
jϺ亯ÁÓ©ËãÒÓˮөË¹¯º°¯ÈÓ°mÈ
jÓmȯÒÈÓÓºË¹º¹¯º°¯ÈÓ°mºãÒÓˮӺºº¹Ë¯Èº¯È
jÓmȯÒÈÓÓºË°º°mËÓÓºË¹º¹¯º°¯ÈÓ°mºãÒÓˮӺºº¹Ë¯Èº¯È
jÓmȯÒÈÓ©ãÒÓÒ®mº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
jÓË}ÒmÓºËãÒÓˮӺËºº¯ÈÎËÓÒËÒÓË}Ò«
¬
zÈÓºÓÒË°}ÒË¯ÈmÓËÓÒ«ãÒÓÒÒmº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
zÈÓºÓÒË°}ÒË¯ÈmÓËÓÒ«¹ºm˯²Óº°Òmº¯ºº¹º¯«}È
zÈÓºÓÒË°}Ò®mÒ}mȯÈÒÓººÁÓ}ÒºÓÈãÈ
zmȯÈÓÈ«äÈ¯ÒÈ
zmȯÈÒÓÈ«Áº¯äÈ
zmȯÈÒÓ©®ÁÓ}ÒºÓÈã
zmȯÈÓÈ«äÈ¯ÒÈ¹º¯«}È
n

zãÈ°°ÒÁÒ}ÈÒ«¹ºm˯²Óº°Ë®mº¯ºº¹º¯«}È
zºããÒÓËȯӺ°
zºããÒÓËȯөËmË}º¯©
zºääÈº¯ãÒÓˮө²º¹Ë¯Èº¯ºm
zºä¹ãÈÓȯӺ°
zºä¹ãÈÓȯөËmË}º¯©
zºä¹ãË}°Ó©ËÒ°ãÈ¯
zºä¹ºÓËÓ©mË}º¯È
zºä¹ºÓËÓ©ªãËäËÓÈãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
zºÓÒË°}È«¹ºm˯²Óº°
zºÓÒË°}ºË°ËËÓÒË
zºÓ°
zºº¯ÒÓÈÓºË¹¯Ë°ÈmãËÓÒËÒãÒÓˮӺºÁÓ}ÒºÓÈãÈmÈÏÒ°Ë
zºº¯ÒÓÈÓºË¹¯Ë°ÈmãËÓÒËãÒÓˮӺºº¹Ë¯Èº¯ÈmÈÏÒ°Ë
zºº¯ÒÓÈÓºË¹¯Ë°ÈmãËÓÒËãÒÓˮӺºÁÓ}ÒºÓÈãÈmÈÏÒ°Ë
zºº¯ÒÓÈÓºË ¹¯Ë°ÈmãËÓÒË °}È㫯Ӻº ¹¯ºÒÏmËËÓÒ« m ÈÏÒ°Ë Ëm}ãÒºmÈ
¹¯º°¯ÈÓ°mÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp




            ©
            
            ~ȹҰ ˆËÓϺ¯ºm¯
            
            
            

            ª
            
            jÏäËÓËÓÒË}ºä¹ºÓËӈºm­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãȹ¯Ò°äËÓË­ÈÏÒ°È
            jÏäËÓËÓÒË}ºä¹ºÓËӈºm}mȯȈÒÓººÁ‚Ó}ÒºÓÈãȹ¯Ò°äËÓË­ÈÏÒ°È
            jÏäËÓËÓÒË}ºä¹ºÓËӈºmãÒÓˮӺºÁ‚Ó}ÒºÓÈãȹ¯Ò°äËÓË­ÈÏÒ°È
            jÏäËÓËÓÒË}ºº¯ÒÓȈˆº}Ò¹¯Ò°äËÓË­ÈÏÒ°È
            jÏäËÓËÓÒË}ºº¯ÒÓȈªãËäËӈÈãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmȹ¯Ò°äËÓË­ÈÏÒ°È
            jÏäËÓËÓÒËäȈ¯Ò©ãÒÓˮӺºº¹Ë¯Èˆº¯È¹¯Ò°äËÓË­ÈÏÒ°È
            jϺ亯ÁÒÏä
            jϺ亯ÁÓ©ËãÒÓˮө˹¯º°ˆ¯ÈÓ°ˆmÈ
            jÓmȯÒÈӈӺ˹º¹¯º°ˆ¯ÈÓ°ˆmºãÒÓˮӺºº¹Ë¯Èˆº¯È
            jÓmȯÒÈӈӺË°º­°ˆmËÓӺ˹º¹¯º°ˆ¯ÈÓ°ˆmºãÒÓˮӺºº¹Ë¯Èˆº¯È
            jÓmȯÒÈӈ©ãÒÓÒ®mˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ
            jӞË}ˆÒmÓºËãÒÓˮӺ˺ˆº­¯ÈÎËÓÒË ÒӞË}Ò« 
            
            
            

            ¬
            
            zÈÓºÓÒË°}ÒË‚¯ÈmÓËÓÒ«ãÒÓÒÒmˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ
            zÈÓºÓÒË°}ÒË‚¯ÈmÓËÓÒ«¹ºm˯²Óº°ˆÒmˆº¯ºº¹º¯«}È
            zÈÓºÓÒË°}Ò®mÒ}mȯȈÒÓººÁ‚Ó}ÒºÓÈãÈ
            zmȯȈÓÈ«äȈ¯ÒÈ
            zmȯȈÒÓÈ«Áº¯äÈ
            zmȯȈÒÓ©®Á‚Ó}ÒºÓÈã
            zmȯȈÓÈ«äȈ¯Òȹº¯«}Èn
            zãÈ°°ÒÁÒ}ÈÒ«¹ºm˯²Óº°ˆË®mˆº¯ºº¹º¯«}È
            zºããÒÓËȯӺ°ˆ 
            zºããÒÓËȯөËmË}ˆº¯©
            zºä䂈Ȉº¯ãÒÓˮө²º¹Ë¯Èˆº¯ºm
            zºä¹ãÈÓȯӺ°ˆ 
            zºä¹ãÈÓȯөËmË}ˆº¯©
            zºä¹ãË}°Ó©ËÒ°ãȁ¯
            zºä¹ºÓËӈ©mË}ˆº¯È
            zºä¹ºÓËӈ©ªãËäËӈÈãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
            zºÓÒË°}È«¹ºm˯²Óº°ˆ 
            zºÓÒË°}ºË°ËËÓÒË
            zºÓ‚°
            zºº¯ÒÓȈӺ˹¯Ë°ˆÈmãËÓÒË­ÒãÒÓˮӺºÁ‚Ó}ÒºÓÈãÈm­ÈÏÒ°Ë
            zºº¯ÒÓȈӺ˹¯Ë°ˆÈmãËÓÒËãÒÓˮӺºº¹Ë¯Èˆº¯Èm­ÈÏÒ°Ë
            zºº¯ÒÓȈӺ˹¯Ë°ˆÈmãËÓÒËãÒÓˮӺºÁ‚Ó}ÒºÓÈãÈm­ÈÏÒ°Ë
            zºº¯ÒÓȈӺË ¹¯Ë°ˆÈmãËÓÒË °}È㫯Ӻº ¹¯ºÒÏmËËÓÒ« m ­ÈÏÒ°Ë Ëm}ãÒºmÈ
                   ¹¯º°ˆ¯ÈÓ°ˆmÈ