Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 49 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
53
¯ºÒÏmËËÓÒ«mË}º¯ºm

˺¯ËäÈ

¯º®}È mË}º¯ºm
{,, }
fff
123
→→
º¯ÈÏË ÈÏÒ° ÓÈÏ©mÈËä©®
mÏÈÒäÓ©ä
ÈÏÒ°
{, ,}
ggg
123
→→

iº}ÈÏÈËã°mº
iã«º}ÈÏÈËã°mÈº°ÈºÓº ¹º}ÈÏÈºmË}º¯©
fff
123
→→
,,
ãÒÓˮӺÓ ËÏÈmÒ
°Òä©
¯Ë¹ºãºÎÒä ¹¯ºÒmÓºË ° °˰m ÓË ¯ÈmÓ©Ë ºÓºm¯ËäËÓÓº Óã
Ò°ãÈ
λλλ
123
,,
È}ÒË º
λλ λ
11 2 2 33
fffo
→→→
++=
 äÓºÎÒm ¹º°ã˺mÈËãÓº ºË
ȰÒªºº¯ÈmËÓ°mÈ°}È㫯ӺÓÈ
g
j
j
=[1,3],
¹ºãÒä
λλ λ
11 2 2 33
013(, ) (, ) (, ) , [,]
fg fg fg j
jjj
→→
++==

iã« Ëm«Ò m©¯ÈÎËÓÒ®
(, ), [,], [,]
fg i j
ij
→→
==
13 13
ÒäËËä
(, )
,
,
fg
ij
ij
ij
→→
=
=
α
0
 Ë
α
0
iË®°mÒËãÓº m©¯ÈÎËÓÒ«
(,), [,]
fg i
ii
→→
=
13
°°äËÈÓÓ©Ë¹¯ºÒÏmËËÓÒ«
ÓË}ºä¹ãÈÓȯө²mË}º¯ºm
ggg
123
→→
,,
Ò¹ººäºãÒÓ©ºÓã«|°ÈãÓ©Ë˰
m©¯ÈÎËÓÒ®
(, ),
fg i j
ij
→→
 °äËÈÓÓ©äÒ ¹¯ºÒÏmËËÓÒ«äÒ mË}º¯ºm °¯ËÒ
}ºº¯©²ÒäËË°«¹È¯È¯ÈmÓ©²Ò°ã˺mÈËãÓº¯ÈmÓ©äÒÓã
º°Èmã«« ÏÓÈËÓÒ« m©¯ÈÎËÓÒ® m °Ò°Ëä ¯ÈmËÓ°m  ¹ºãÒä º m°Ë
λ
i
=
0

i
=[1,3]
 º ¹¯ºÒmº¯ËÒ °ËãÈÓÓºä ¹¯Ë¹ºãºÎËÓÒºãÒÓˮӺ®
ÏÈmÒ°Ò亰ÒmË}º¯ºm
fff
123
→→
,,

˺¯ËäÈº}ÈÏÈÓÈ

imº®ÓºËmË}º¯ÓºË¹¯ºÒÏmËËÓÒË
|¹¯ËËãËÓÒË

bkvptu knrzvétu wévqoknlntqnu mË}º¯ºm
a

b
Ò
c
Ó ÈÏ©mÈË°«
mË}º¯
[
]],[,[
cba .
iã«¯«ÈÏÈÈº}ÈÏ©mÈË°«¹ºãËÏÓ©ä¹¯ÒäËÓËÓÒËÁº¯äã©
[,[,]] (,) (,)
abc bac cab
→→
=−

º}ÈÏÈËã°mº}ºº¯º®¹¯ÒmºÒ°«m¹¯ÒãºÎËÓÒÒ°ä¯
c È Ï  Ë ã                                                      53
¯ºÒÏmËËÓÒ«mË}ˆº¯ºm



                                                                                  →       →       →
    ‘˺¯ËäÈ                       ‘¯º®}È mË}ˆº¯ºm { f 1 , f 2 , f 3 }  º­¯Èςˈ ­ÈÏÒ° ÓÈÏ©mÈËä©® mÏÈÒäÓ©ä
                                                  →      →      →
                                   ­ÈÏÒ°‚ {g1 , g 2 , g 3 } 
           
     iº}ÈÏȈËã°ˆmº
                                                                                                                                               →      →       →
               i㫺}ÈÏȈËã °ˆmȺ°ˆÈˆºÓº¹º}ÈÏȈ ˆºmË}ˆº¯© f 1 , f 2 , f 3 ãÒÓˮӺÓËÏÈmÒ
               °Òä©
               
               ¯Ë¹ºãºÎÒä ¹¯ºˆÒmÓºË ‚°ˆ  °‚Ë°ˆm‚ ˆ ÓË ¯ÈmÓ©Ë ºÓºm¯ËäËÓÓº ӂã 
                                                                                       →               →             →        →
               Ò°ãÈ λ1 , λ2 , λ3  ˆÈ}ÒË ˆº λ1 f 1 + λ2 f 2 + λ3 f 3 = o  äÓºÎÒm ¹º°ã˺mȈËã Óº º­Ë
                                                                                                   →
               ȰˆÒªˆºº¯ÈmËÓ°ˆmȰ}È㫯ӺÓÈ g j  j=[1,3],¹ºã‚Òä
                                                               →      →                 →      →                 →      →
                                                        λ1 ( f 1 , g j ) + λ2 ( f 2 , g j ) + λ3 ( f 3 , g j ) = 0 ,                             j = [1,3]   
                                                                               →       →                                                                     →      →           α , i = j
               iã« Ëm«ˆÒ m©¯ÈÎËÓÒ® ( f i , g j ) , i = [1,3], j = [1,3]  ÒäËËä ( f i , g j ) =                                                                                       Ë
                                                                                                                                                                                0, i ≠ j
                                                                                                    →      →
               α ≠ 0  iË®°ˆm҈Ëã Óº m©¯ÈÎËÓÒ« ( f i , gi ) , i = [1,3]  °‚ˆ  °äË ÈÓÓ©Ë ¹¯ºÒÏmËËÓÒ«
                                                                                →      →       →
               ÓË}ºä¹ãÈÓȯө²mË}ˆº¯ºm g1 , g 2 , g 3 Ò¹ºˆºä‚ºˆãÒÓ©ºˆӂã«|°ˆÈã Ó©Ë ˰ˆ 
                                                →     →
               m©¯ÈÎËÓÒ® ( f i , g j ) , i ≠ j  ­‚‚ˆ °äË ÈÓÓ©äÒ ¹¯ºÒÏmËËÓÒ«äÒ mË}ˆº¯ºm °¯ËÒ
               }ºˆº¯©²ÒäËˈ°«¹È¯È¯ÈmÓ©²Ò°ã˺mȈËã Óº¯ÈmÓ©äÒӂã 
               
               º°ˆÈmã«« ÏÓÈËÓÒ« m©¯ÈÎËÓÒ® m °Ò°ˆËä‚ ¯ÈmËÓ°ˆm   ¹ºã‚Òä ˆº m°Ë
               λi = 0   i=[1,3] ˆº ¹¯ºˆÒmº¯Ë҈ °ËãÈÓÓºä‚ ¹¯Ë¹ºãºÎËÓÒ  º ãÒÓˮӺ®
                                                                      →       →      →
               ÏÈmÒ°Ò亰ˆÒmË}ˆº¯ºm f 1 , f 2 , f 3 
        
        ‘˺¯ËäȺ}ÈÏÈÓÈ
                  
                  
                  
                  
imº®ÓºËmË}ˆº¯ÓºË¹¯ºÒÏmËËÓÒË
                  
                  
                  
                                                                                                                                                   →        →             →
    |¹¯ËËãËÓÒË                   bkvpt€u knrzvét€u wévqoknlntqnu mË}ˆº¯ºm a  b  Ò c  ÓÈÏ©mÈˈ°«
                                                 →      → →
                                   mË}ˆº¯[ [ a ,[ b , c ]] .
                  
                  
                  i㫯«ÈÏÈȺ}ÈÏ©mÈˈ°«¹ºãËÏө乯ÒäËÓËÓÒËÁº¯ä‚ã©
                                                                        →      → →               → → →                 → → →
                                                                     [ a ,[ b , c ] ] = b ( a , c ) − c ( a , b ) 
                                         
º}ÈÏȈËã °ˆmº}ºˆº¯º®¹¯Òmº҈°«m¹¯ÒãºÎËÓÒÒ °ä¯