Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 53 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
57
¯«äÈ«Ò¹ãº°}º°

iº}ÈÏÈËã°mº
°
r
x
y
=
ÓË}ºº¯È«º}ÈÓÈ¹¯«äº®ºÈmË}º¯
D
ºãÎËÓ©}ºããÒ
ÓËȯËÓmË}º¯
rr
→→
0
cÒ°jãÒÒÓÈË
rr a
→→
−=
0
τ

|}È ¹ºãÈËä ¹È¯ÈäË
¯Ò˰}ºË ¹¯Ë°ÈmãËÓÒË
¹¯«äº®
rr a
→→
=+
0
τ

Ë
τ
(
−∞
,+
)

˺¯ËäÈº}ÈÏÈÓÈ

L

a

r
0

rr
→→
0

r

g
2
O g
1
èqxytvr
˺¯ËäÈ

{°«}È«¹¯«äÈ«mã
º®
Ë}ȯºmº® °Ò°ËäË }ºº¯
ÒÓÈ äºÎË ©
ÏÈ
ÈÓÈ¯ÈmÓËÓÒËämÒ
È
Ax By C A B
++= + >
00,
iº}ÈÏÈËã°mº
°ãºmÒË}ºããÒÓËȯӺ°ÒÓËÓãËm©²mË}º¯ºm
a
Ò
rr
→→
0
m}ºº¯ÒÓÈÓº®Áº¯äË
ÒäËËmÒ
x
y
x
y
a
a
x
y
−=
0
0
τ
ÒãÒ
xx a
yy a
x
y
−=
−=
0
0
τ
τ

|}È
axx ayy
yx
()()
−− =
00
0
 ÒãÒ ÎË
Ax By C A B
++= + >
00,
 Ë
Aa Ba C ax ay
yx yx
===
;;
00
Òä©¹ºãÒãÒº¯ÈmÓËÓÒË ¹ ¯«äº®˰Èã
Ë¯ÈÒ˰}ºË ¯ÈmÓËÓÒË ¹Ë¯mº® °˹ËÓÒ ~ ÈäËÒä º °¹¯ÈmËãÒmº°
Ó˯ÈmËÓ°mÈ
AB+>0
°ãËËÒÏ°ãºmÒ«
ao
→→

˺¯ËäÈº}ÈÏÈÓÈ

˺¯ËäÈ

{°«}ºË ¯ÈmÓËÓÒË È
Ax By C A B
++= + >
00,
 m ãº®
Ë}ȯºmº®°Ò°ËäË}ºº¯
ÒÓÈ˰
¯ÈmÓËÓÒËÓË}ºº¯º®¹¯«äº®
c È Ï  Ë ã                                                      57
¯«äȫҹ㺰}º°ˆ 



     iº}ÈÏȈËã°ˆmº
      
                               →           x                                           →
               ‚°ˆ  r =                    ÓË}ºˆº¯È«ˆº}ÈÓȹ¯«äº®ˆºÈmË}ˆº¯ D ºãÎËÓ­©ˆ }ºããÒ
                                           y
                                                     →       →                                                              →       →            →
               ÓËȯËÓmË}ˆº¯‚ r − r0  cÒ° jãÒÒÓÈË r − r0 = τ a 
        
        
              |ˆ}‚È ¹ºã‚ÈËä ¹È¯Èäˈ L
               ¯Ò˰}ºË     ¹¯Ë°ˆÈmãËÓÒË                                      →
               ¹¯«äº®                       a 
                                           
                                     →        →          →                                                                                   →                                     →       →
                                     r = r0 + τ a                                       r0  r − r0 
                                                                                                                                                              →
                                                                                           r 
               Ëτ∈(−∞,+∞)                                                                                                 →
                                                                                          g 2 
                                                                                                                                                                 →
        ‘˺¯ËäȺ}ÈÏÈÓÈ                                                                O g1 
            
            èqxytvr
            
            
    ‘˺¯ËäÈ           {°«}È« ¹¯«äÈ« m ã ­º® Ë}ȯˆºmº® °Ò°ˆËäË }ºº¯ÒÓȈ äºÎˈ ­©ˆ 
    
                       ÏÈÈÓÈ‚¯ÈmÓËÓÒËämÒÈ Ax + By + C = 0 ,                    A + B > 0 
            
     iº}ÈÏȈËã°ˆmº
       
                                                                                                                            →           →       →
               °ãºmÒË}ºããÒÓËȯӺ°ˆÒÓËӂãËm©²mË}ˆº¯ºm a Ò r − r0 m}ºº¯ÒÓȈӺ®Áº¯äË
               ÒäËˈmÒ
               
                                                                      x           x0               ax                    x − x0 = τ a x
                                                                           −              =τ               ÒãÒ                        
                                                                      y           y0               ay                    y − y0 = τ a y
                                                                                                             
               |ˆ}‚È a y ( x − x 0 ) − a x ( y − y 0 ) = 0  ÒãÒ ÎË Ax + By + C = 0 ,                                                                           A + B > 0  Ë
                A = a y ; B = a x ; C = − a y x 0 − a x y 0 Ò䩹ºã‚ÒãÒˆº‚¯ÈmÓËÓÒ˹¯«äº®˰ˆ Èã
               Ë­¯ÈÒ˰}ºË ‚¯ÈmÓËÓÒË ¹Ë¯mº® °ˆË¹ËÓÒ ~ÈäˈÒä ˆº °¹¯ÈmËãÒmº°ˆ 
                                                                                                                         →         →
               Ó˯ÈmËÓ°ˆmÈ A + B > 0 °ãË‚ˈÒÏ‚°ãºmÒ« a ≠ o 
        
        
        ‘˺¯ËäȺ}ÈÏÈÓÈ
                  
                  
    ‘˺¯ËäÈ                       {°«}ºË ‚¯ÈmÓËÓÒË mÒÈ Ax + By + C = 0 ,  A + B > 0  m ã ­º®
    
                                   Ë}ȯˆºmº®°Ò°ˆËäË}ºº¯ÒÓȈ˰ˆ ‚¯ÈmÓËÓÒËÓË}ºˆº¯º®¹¯«äº®