Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 54 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
iº}ÈÏÈËã°mº
°ÈÓº¯ÈmÓËÓÒË¹Ë¯mº®°˹ËÓÒ
Ax By C A B++= + >00,
{©˯Ëä
¹È¯ Ò°Ëã
x
0
Ò
y
0
È}Ò² º
Ax By C
00
0
++=
{©ÒÈ« ¹ºãËÓÓº mÈ ªÒ
¯ÈmËÓ°mÈ¹ºãÒä
Ax x By y
()()
−+ =
00
0

{ºÏäËä º}
r
x
y
0
0
0
=
ÒmË}º¯
a
B
A
=
 º ˺¯ËäË  ÒäËËä º
¹¯«äÈ«¹¯º²º«È«˯ËÏº}
r
0
mÓȹ¯ÈmãËÓÒÒmË}º¯È
a
ÒäËË¯ÈmÓË
ÓÒË È
Ax x By y
()()
−+ =
00
0
 vã˺mÈËãÓº Ò°²ºÓºË ¯ÈmÓËÓÒË ˰
¯ÈmÓËÓÒË¹¯«äº®
˺¯ËäÈº}ÈÏÈÓÈ

˺¯ËäÈ

iã« ºº º© ¯ÈmÓËÓÒ«
Ax By C A B
111 11
00
++= +>
,
Ò
Ax By C A B
222 22
00
++= +>
,
©ãÒ¯ÈmÓËÓÒ«äÒºÓº®Òº®ÎË
¹¯«äº® Ó˺²º
Òäº Ò
º°Èº
Óº
º© °˰mºmÈãº
Ò°ãº
λ
0
È}ºËº
AABBCC
121212
===
λλλ
;;
iº}ÈÏÈËã°mº
iº}ÈÎËäº°ÈºÓº°
° }ºªÁÁÒÒËÓ© ¯ÈmÓËÓÒ® ¹¯º¹º¯ÒºÓÈãÓ© Ò ÒäËË ä˰º
Ax By C
222
0
++=
ºÈ
Ax By C Ax By C Ax By C
222 1 1 1 111
1111
0++= + + = ++=
λλλλ
()

Óº¹º°}ºã}
λ
0
º
Ax By C
111
0
++=

kÓÈãºÒÓºÒÏ
Ax By C
111
0
++=
°ãËË
Ax By C
222
0
++=

iº}ÈÎËäÓ˺²ºÒ亰
° ¯ÈmÓËÓÒ«
Ax By C
111
0
++=
Ò
Ax By C
222
0
++=
˰ ¯ÈmÓËÓÒ«
ºÓº®Òº®ÎË¹¯«äº®mÓË}ºº¯º®Ë}ȯºmº®°Ò°ËäË}ºº¯ÒÓÈº  È
Ò² Óȹ¯Èmã«ÒË mË}º¯© }ºããÒÓËȯө Ò °˰mË ¹º ˺¯ËäË 
λ
0
È}ºËº
AABB
1212
==
λλ
;

v ¯º® °º¯ºÓ© ÒÏ ¯ÈmÓº°ÒãÓº°Ò ¯ÈmÓËÓÒ®
0
122
=++
CyBxA
λλ
Ò
0
222
=++
CyBxA
°ãËË º
CC
12
=
λ
Ò º}ºÓÈËãÓº
AABBCC
121212
===
λλλ
;;

˺¯ËäÈº}ÈÏÈÓÈ

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº
     
            ‚°ˆ ÈÓº‚¯ÈmÓËÓÒ˹˯mº®°ˆË¹ËÓÒ Ax + By + C = 0 ,                                          A + B > 0 {©­Ë¯Ëä
            ¹È¯‚ Ò°Ëã x 0  Ò y 0  ˆÈ}Ò² ˆº Ax 0 + By 0 + C = 0   {©҈ȫ ¹ºãËÓÓº mÈ ªˆÒ
            ¯ÈmËÓ°ˆmȹºã‚Òä A( x − x 0 ) + B ( y − y 0 ) = 0 
            
                                        →        x0              →   −B
            {ºÏ äËä ˆº}‚ r0 =                     Ò mË}ˆº¯ a =     º ˆËº¯ËäË  ÒäËËä ˆº
                                                 y0                   A
                                                                    →                                            →
            ¹¯«äÈ«¹¯º²º«È«˯Ëψº}‚ r0 mÓȹ¯ÈmãËÓÒÒmË}ˆº¯È a ÒäËˈ‚¯ÈmÓË
            ÓÒË mÒÈ A( x − x 0 ) + B ( y − y 0 ) = 0  vã˺mȈËã Óº Ò°²ºÓºË ‚¯ÈmÓËÓÒË ˰ˆ 
            ‚¯ÈmÓËÓÒ˹¯«äº®
        
        
        ‘˺¯ËäȺ}ÈÏÈÓÈ
            
            
    ‘˺¯ËäÈ             iã« ˆºº ˆº­© ‚¯ÈmÓËÓÒ«                              A1 x + B1 y + C1 = 0 ,             A1 + B1 > 0  Ò
    
                          A2 x + B2 y + C2 = 0 ,A2 + B2 > 0 ­©ãÒ‚¯ÈmÓËÓÒ«äÒºÓº®Òˆº®ÎË
                         ¹¯«äº® Ó˺­²ºÒäº Ò º°ˆÈˆºÓº ˆº­© °‚Ë°ˆmºmÈ㺠Ұ㺠λ ≠ 0 
                         ˆÈ}ºËˆº A1 = λ A2 ; B1 = λ B2 ; C1 = λ C2 
          
     iº}ÈÏȈËã°ˆmº
      
              iº}ÈÎË亰ˆÈˆºÓº°ˆ 
      
              ‚°ˆ  }ºªÁÁÒÒËӈ© ‚¯ÈmÓËÓÒ® ¹¯º¹º¯ÒºÓÈã Ó© Ò ÒäËˈ ä˰ˆº
               A2 x + B2 y + C2 = 0 ‘ºÈ
                                              1         1       1    1
                                A2 x + B2 y + C2 =
                                                 A1 x + B1 y + C1 = ( A1 x + B1 y + C1 ) = 0 
                                              λ         λ       λ    λ
                   Óº¹º°}ºã }‚ λ ≠ 0 ˆº A1 x + B1 y + C1 = 0 
                   
                   kÓÈãºÒÓºÒÏ A1 x + B1 y + C1 = 0 °ãË‚ˈ A2 x + B2 y + C2 = 0 
        
                  iº}ÈÎËäÓ˺­²ºÒ亰ˆ 
        
                   ‚°ˆ  ‚¯ÈmÓËÓÒ« A1 x + B1 y + C1 = 0  Ò A2 x + B2 y + C2 = 0  ˰ˆ  ‚¯ÈmÓËÓÒ«
                   ºÓº®Òˆº®Î˹¯«äº®mÓË}ºˆº¯º® Ë}ȯˆºmº®°Ò°ˆËäË}ºº¯ÒÓȈ‘ºÈ
                   Ò² Óȹ¯Èmã« ÒË mË}ˆº¯© }ºããÒÓËȯө Ò °‚Ë°ˆm‚ˈ ¹º ˆËº¯ËäË  
                   λ ≠ 0 ˆÈ}ºËˆº A1 = λ A2 ; B1 = λ B2 
                   
                   v ¯‚º® °ˆº¯ºÓ© ÒÏ ¯ÈmÓº°Òã Óº°ˆÒ ‚¯ÈmÓËÓÒ® λ A2 x + λ B2 y + C1 = 0  Ò
                    A2 x + B2 y + C 2 = 0  °ãË‚ˈ  ˆº                             C1 = λ C2             Ò       º}ºÓȈËã Óº
                    A1 = λ A2 ; B1 = λ B2 ; C1 = λ C2 
                   
        ‘˺¯ËäȺ}ÈÏÈÓÈ