Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 56 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
°
{Ë}º¯ÓºË
¯ÈmÓËÓÒË
¹¯«äº®
¯ÈmÓËÓÒË
¹¯«äº® ¹¯º
²º«Ë® Ë
¯ËÏ ÈÓÓ
º}
r
x
y
0
0
0
=

¹Ë¯¹ËÓÒ}
㫯Ӻ ÏÈÈÓ
Óºä ÓËÓãË
mºä mË}º¯

n
n
n
x
y
=

L

n

r
0

g
2

r

O

g
1
èqxytvr
{ºÏäËä m ˰mË Óȹ¯Èmã«˺ mË}º¯È ÈÓÓº® ¹¯«äº®
arr
xx
yy
→→
=− =
0
0
0
ËmË}º¯
r
x
y
=
˰¯ÈÒ°mË}º¯ÓË}ºº¯º®
º}ÒÓÈ¹¯«äº®cÒ°ºÈÒÏ°ãºmÒ«º¯ººÓÈãÓº°ÒmË}º
¯ºm
n
Ò
rr
→→
0
¹ºãÒä
(, )
nr r
→→
−=
0
0
 ÒãÒ
(,)
nr d
→→
=
 Ë
dnr
=
→→
(,)
0

¯Òº¯ÈÓºä¹Ë¯Ë²ºËºÏȹҰÒ¯ÈmÓËÓÒ«¹¯«äº®mË
(,)
nr d
→→
=
}
(, )
nr r
→→
−=
0
0
m}È˰mË
r
0
äºÎÓºmÏ«Óȹ¯Òä˯
r
d
nn
n
0
→→
=
(,)

{vézvtvéuqévkjttvp°Ò°ËäË}ºº¯ÒÓÈ
{, , }Oe e
12
→→
mË}º¯ÓºË ¯ÈmÓË
ÓÒË ¹¯«äº® ¹¯Òº¯ËÈË
nxx ny y
xy
()()
−+ =
00
0
ÒãÒÎË
nx ny d
xy
+=
Ë
dnx ny
xy
=+
00

v¯ÈmÓÒmÈ«¹º°ãËÓ  ÏȹҰ°ºÒämÒºä¯ÈmÓËÓÒ«¹¯«
亮
Ax By C
++=
0
 ¹¯Ò²ºÒä } ÏÈ}ãËÓÒ º m vézvtvéuqévkjt
tvp°Ò°ËäË}ºº¯ÒÓÈmË}º¯
n
A
B
=
Ëº¯ººÓÈãËÓªº®¹¯«äº®
|¹¯ËËãËÓÒË

{Ë}º¯
n
ÓÈÏ©mÈË°«tvéujstuknrzvévu¹¯«äº®
L .
°
sº¯äÈãÓºË
¯ÈmÓËÓÒË
¹¯«äº®
cȰ°äº¯Òä°}È㫯ӺË¯ÈmÓËÓÒË¹¯«äº®mvézvtvéuqévkjttvp°Ò°Ë
äË }ºº¯ÒÓÈ
{, , }
Oe e
12
→→
Ax By C A B
++= + >
00,
Ò ¹¯Ëº¯ÈÏËä
˺¯ÈÏËãÒmºËȰÒÓÈ
22
BA
+
º°Èmã««ººÏÓÈËÓÒ«
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



°{Ë}ˆº¯ÓºË      
   ‚¯ÈmÓËÓÒË                                                      L
     ¹¯«äº®                                                                                                              →
      ‚¯ÈmÓËÓÒË
     ¹¯«äº® ¹¯º
                          n 
     ²º«Ë® Ë        
     ¯ËÏ ÈÓӂ         
     ˆº}‚                                                                                            →
     →       x0           r0 
     r0 =                                                                   →                                                        →
             y0           g 2  r 
     ¹Ë¯¹ËÓÒ}‚        
     㫯Ӻ ÏÈÈÓ
     Óºä‚ ÓËӂãË       
     mºä‚ mË}ˆº¯‚                                                                                            →
     →      nx            O   g1 
     n=             
            ny         
                      èqxytvr
                       
                       {ºÏ äËä m }È˰ˆmË Óȹ¯Èmã« Ëº mË}ˆº¯È                                                          ÈÓÓº®    ¹¯«äº®
                         →      →      →         x − x0               →   x
                          a = r − r0 =                  ËmË}ˆº¯ r =   ˰ˆ ¯È҂°mË}ˆº¯ÓË}ºˆº¯º®
                                                 y − y0                   y
                         ˆº}ÒÓȹ¯«äº® cÒ° ‘ºÈÒÏ‚°ãºmÒ«º¯ˆººÓÈã Óº°ˆÒmË}ˆº
                                  →         →      →                          → →        →                          → →                      → →
                         ¯ºm n  Ò r − r0  ¹ºã‚Òä ( n , r − r0 ) = 0  ÒãÒ ( n , r ) = d  Ë d = ( n , r0 ) 
                                                                                                                                        → →
                         ¯Òº­¯ÈˆÓºä¹Ë¯Ë²ºËºˆÏȹҰÒ‚¯ÈmÓËÓÒ«¹¯«äº®mmÒË ( n , r ) = d 
                               → →        →                                   →                                               →     d       →
                         } ( n , r − r0 ) = 0 m}È˰ˆmË r0 äºÎÓºmÏ«ˆ Óȹ¯Òä˯ r0 =                                     → →       n 
                                                                                                                                  (n, n)
                                                                                                                    → →
                         {vézvtvéuqévkjttvp°Ò°ˆËäË}ºº¯ÒÓȈ {O, e1 , e2 } mË}ˆº¯ÓºË‚¯ÈmÓË
                         ÓÒË ¹¯«äº® ¹¯Òº­¯ËˆÈˈ mÒ n x ( x − x 0 ) + n y ( y − y 0 ) = 0  ÒãÒ ÎË
                         n x x + n y y = d Ë d = n x x 0 + n y y 0 
                         
                                v¯ÈmÓÒmÈ« ¹º°ãËÓ       ÏȹҰ  ° º­Òä mÒºä ‚¯ÈmÓËÓÒ« ¹¯«
                         亮 Ax + By + C = 0  ¹¯Ò²ºÒä } ÏÈ}ã ËÓÒ  ˆº m vézvtvéuqévkjt
                                                                                    →         A
                         tvp°Ò°ˆËäË}ºº¯ÒÓȈmË}ˆº¯ n =                                      ­‚ˈº¯ˆººÓÈãËÓªˆº®¹¯«äº®
                                                                                              B
            
            
                                       →
 |¹¯ËËãËÓÒË            {Ë}ˆº¯ n ÓÈÏ©mÈˈ°«tvéujst€uknrzvévu¹¯«äº®L .
 
            
 ° sº¯äÈãÓºË cȰ°äºˆ¯Òä°}È㫯ӺË‚¯ÈmÓËÓÒ˹¯«äº®mvézvtvéuqévkjttvp°Ò°ˆË
      ‚¯ÈmÓËÓÒË                                             → →
      ¹¯«äº®            äË }ºº¯ÒÓȈ {O, e1 , e2 }  Ax + By + C = 0 ,                                       A + B > 0  Ò ¹¯Ëº­¯ÈςËä
                         ˺¯ÈÏËãÒmº­ËȰˆÒÓÈ A 2 + B 2 º°ˆÈmã««º­ºÏÓÈËÓÒ«