Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 57 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
61
¯«äÈ«Ò¹ãº°}º°

cos ; sin ;
ϕϕ
ρ
=
+
=
+
=
+
A
AB
B
AB
C
AB
22 22 22

¹ºãÒäÈ}ÓÈÏ©mÈËätvéujstyíÁº¯äÏȹҰÒ¯ÈmÓËÓÒ«
xycos sin
ϕϕ
ρ
++=0

˺äË¯Ò˰}Ò®°ä©°ã¹È¯ÈäË¯ºm
ρ
Ò
ϕ
«°ËÓÒÏ°ãË˺¯Ò°
y
_
ρ
_

ϕ
Ox
èqxytvr
y

+
P
 
drnL =
),(:

M

n
 O x

M
  
P
èqxytvr
c È Ï  Ë ã                                                      61
¯«äȫҹ㺰}º°ˆ 



                                                                                  A                                              B                                       C
                                                        cos ϕ =                                 ;      sin ϕ =                                 ;       ρ=                              
                                                                            A2 + B 2                                       A2 + B 2                                 A2 + B 2
                                   
                                   ¹ºã‚ÒäˆÈ}ÓÈÏ©mÈËä‚ tvéujstyíÁº¯ä‚ÏȹҰÒ‚¯ÈmÓËÓÒ«
                                   
                                                          x cosϕ + y sin ϕ + ρ = 0 
                                   
                                   €Ëºäˈ¯Ò˰}Ò®°ä©°ã¹È¯Èäˈ¯ºmρÒϕ«°ËÓÒϰãË‚ Ëº¯Ò°
                                   
                                   
                                   
                                                     y
                                   
                                   
                                   
                                   
                                   
                                   
                                   _ρ_
                                   
                                   ϕ
                                   
                                   Ox
                                   
                                   
                                                                                                        èqxytvr
                                   
                  
                  
                  
                  
y

                                                                                                                                                                            → →
                                             P+                                                         L : ( n , r ) = d 

                                                                                                                              →
 M  n 

                       O x

 M ∗ 



                                                       P− 

èqxytvr