Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 59 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
63
¯«äÈ«Ò¹ãº°}º°

ËÓÒË
°°
MK n
→→
=
λ
ºÈ
rr n
→→
=+
1
λ
cÒ°
L

n

r
0

K

r

O

λ
n

r
1

M
èqxytvr
°º}È
K
¹¯ÒÓÈãËÎÒ ÈÓÓº® ¹¯«äº® ¹º
ªºäÒäËËä˰º°ººÓºËÓÒË

(, )nr n r
→→
+−=
10
0
λ

|}È
λ
=−
→→
(, )
||
nr r
n
10
2

°º°Èmã««
λ
mm©¯ÈÎËÓÒËã«
MK
¹ºã
Òä
|||( ,
||
)|
MK r r
n
n
→→
=−
10

°° °Ò°ËäÈ }ºº¯ÒÓÈ º¯ºÓº¯äÒ¯ºmÈÓÓÈ« iã« ¯ÈmÓËÓÒ«
Ax By C A B
++= + >
00,
}È}©ãº¹º}ÈÏÈÓºmË}º¯
n
A
B
=
¹Ë¯¹ËÓÒ}ã«
¯ËÓ¹¯«äº®ºªºä
||
()()
MK
Ax x By y
AB
=
−+
+
10 10
22

¯ÒÓÒäÈ« mº mÓÒäÈÓÒË º º}È
r
0
ãËÎÒÓÈ¹¯«äº®
L
Ò °ã˺mÈËãÓº
Ax By C
00
0
++=
 äºÎÓº ÏȹҰÈº}ºÓÈËãÓ©®ºmËmmÒË
||
MK
Ax By C
AB
=
++
+
11
22

|¹¯ËËãËÓÒË

Íy·rvu wé¹u} ÓÈ ¹ãº°}º°Ò ÓÈÏ©mÈË°« °ºmº}¹Óº° m°Ë² ¹¯«ä©²
¹¯º²º«Ò²˯ËÏÓË}ºº¯ÈÓÓº}ÒäËÓËäkné¡qtvpwy·
rj
˺¯ËäÈ

°
º
}ÈºÈ«
ã«m°Ë²¹¯«ä©²¹
}È«mã«Ë°«º
}º®¹Ë¯Ë°Ë
ËÓÒ«Ó˹ȯÈããËã
Ó©²¹¯«ä©²
Ax By C
111
0
++=
Ò
Ax By C
222
0
++=

ºÈ
°
 iã« ãº® ¹¯«äº® ¹}È ÓÈ®Ë°« ¹È¯È ÓË ¯ÈmÓ©² Óã
ºÓºm¯ËäËÓÓºÒ°Ëã
α
Ò
β
È}Ò²º
c È Ï  Ë ã                                                      63
¯«äȫҹ㺰}º°ˆ 



                                                                                                                 →               →                     →          →       →
    cËËÓÒË                                                                             °‚°ˆ  MK = λ n ˆºÈ r = r1 + λ n  cÒ° 

                                                                                        °‘º}È K ¹¯ÒÓÈãËÎ҈ ÈÓÓº® ¹¯«äº® ¹º
    
                                                                                              ªˆºä‚ÒäËˈä˰ˆº°ººˆÓº ËÓÒË
                                                                                                                             → →             →       →
    L                                                                        ( n , r1 + λ n − r0 ) = 0 
                                                                  →                                                                     → →           →
     n                                                                                         ( n , r1 − r0 )
                                                                                        |ˆ}‚È λ = −                                                
                                                                                                                                              →2
                       →
     r0  K                                                                                            |n |
                                                                                        
                                                                                                                                                                                  →
                                         →
                                                                                         °º°ˆÈmã«« λ mm©¯ÈÎËÓÒËã« MK ¹ºã‚
     r 
                                                           →                                                                                     →
                                                                                                                  →               →       →
    Oλ n                                                            Òä | MK | = |( r1 − r0 ,
                                                                                                                                                 n
                                                                                                                                                      )| 
                                      →                                                                                                          →
     r1 M                                                                                                     |n |

    èqxytvr
    
              
    °‚°ˆ        °Ò°ˆËäÈ                                   }ºº¯ÒÓȈ                         º¯ˆºÓº¯äÒ¯ºmÈÓÓÈ«                                            iã«             ‚¯ÈmÓËÓÒ«
                                                                                                                                                    →          A
          Ax + By + C = 0 ,                          A + B > 0 }È}­©ãº¹º}ÈÏÈÓºmË}ˆº¯ n =                                                                  ¹Ë¯¹ËÓÒ}‚ã«
                                                                                                                                                               B
                                                                 →               A( x1 − x 0 ) + B( y1 − y 0 )
         ¯ËÓ¹¯«äº®ºªˆºä‚ | MK | =                                                                                                  
                                                                                                   A2 + B 2
    
                                                                                                    →
         ¯ÒÓÒäÈ« mº mÓÒäÈÓÒË ˆº ˆº}È r0  ãËÎ҈ ÓÈ ¹¯«äº® L Ò °ã˺mȈËã Óº
         Ax 0 + By 0 + C = 0  äºÎÓº  ÏȹҰȈ     º}ºÓȈËã Ó©®    ºˆmˈ    m    mÒË
              →               Ax1 + By1 + C
         | MK | =                                               
                                     A2 + B 2
                  
                  
                  
    |¹¯ËËãËÓÒË                  Íy·rvu wé¹u€} ÓÈ ¹ãº°}º°ˆÒ ÓÈÏ©mÈˈ°« °ºmº}‚¹Óº°ˆ  m°Ë² ¹¯«ä©²
                            ¹¯º²º«Ò²˯ËÏÓË}ºˆº¯‚ ÈÓӂ ˆº}‚ÒäËӂËä‚ kné¡qtvpwy·
                                   rj
                  
                  
                  
    ‘˺¯ËäÈ                      ‚°ˆ ˆº}Ⱥ­È«ã«m°Ë²¹¯«ä©²¹‚}È«mã«Ëˆ°«ˆº}º®¹Ë¯Ë°Ë
                            ËÓÒ«Ó˹ȯÈããËã Ó©²¹¯«ä©² A1 x + B1 y + C1 = 0 Ò A2 x + B2 y + C2 = 0 
                                   ‘ºÈ
                                   
                                          ° iã« ã ­º® ¹¯«äº® ¹‚}È ÓÈ®ˈ°« ¹È¯È ÓË ¯ÈmÓ©² ӂã 
                                               ºÓºm¯ËäËÓÓºÒ°ËãαÒβˆÈ}Ò²ˆº