Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 60 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
αβ
()( )Ax By C Ax B y C
111 2 2 2
0+++ ++=
˰¯ÈmÓËÓÒËÈÓÓº®¹¯«äº®
°
¯Òã©²ÓË¯ÈmÓ©²ÓãºÓºm¯ËäËÓÓº
α
Ò
β
¯ÈmÓË
ÓÒË
αβ
()( )Ax By C Ax B y C
111 2 2 2
0
+++ ++=
˰ ¯ÈmÓËÓÒË
ÓË}ºº¯º®¹¯«äº®
ÈÓÓº
º¹
}È
iº}ÈÏÈËã°mº
°
 {ºÏäËä ÓË}ºº¯º}
r
x
y
=
 ÓË °ºm¹ÈÈ°m˯ÒÓº® ¹
Ò
¹¯ÒäËäm}È˰mË
α
=++
∗∗
Ax By C
222
Èm}È˰mË
β
=− + +
∗∗
()
Ax By C
111

~ÈäËÒä º
αβ
+>0
 ¹º°}ºã} º}È
r
ÓË ¹¯ÒÓÈãËÎÒ ÈÓÓ©ä¹¯«
ä©äºÓºm¯ËäËÓÓºz¯ºäËºº¹¯«äÈ«
()()()()Ax By C Ax By C Ax By C Ax By C
222111111222
0
∗∗
++ ++ ++ ++=
¹¯º²ºÒ }È} ˯ËÏ º}
r
 È} Ò ˯ËÏ m˯ÒÓ ¹}È Ò °ã˺mÈËãÓº
¹¯ÒÓÈãËÎÒ¹}
°
 °
Ax By C
111
0++=
Ò
Ax By C
222
0++=
¹È¯È¹Ë¯Ë°Ë}ÈÒ²°«¹¯«ä©²ÒÏ
¯È°°äÈ¯ÒmÈË人¹}ÈºÈºËmÒÓºº
0)()(
222111
=+++++
CyBxACyBxA
βα

¯Ò ªºä ¯ÈmÓËÓÒË
0)()()(
212121
=+++++
CCyBBxAA
βαβαβα
«mã«Ë°«
¯ÈmÓËÓÒËä¹¯«äº®¹º°}ºã}ÒÏ
AB
11
0+>

AB
22
0+>
Ò
αβ
+>0
°ãËËº
αβ α β
AA B B
12 1 2
0++ + >

iË®°mÒËãÓºº¹°Òä¹¯ºÒmÓºË

=+
=+
0
0
21
21
βα
βα
BB
AA

¯«ä©Ë
0
111
=++
CyBxA
Ò
0
222
=++
CyBxA
¹º ¹º°¯ºËÓÒ ÒäË ¹º
}¯È®ÓË® ä˯Ë ºÓ ºº} ºªºä ºÓÒ ãÒº °ºm¹ÈÈ ãÒº
¹Ë¯Ë°Ë}È°« º ˺¯ËäË  ºÓÒ °ºm¹ÈÈ ºÈ Ò ºã}º º È È
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                 α ( A1 x + B1 y + C1 ) + β ( A2 x + B2 y + C2 ) = 0 
                              
                              ˰ˆ ‚¯ÈmÓËÓÒËÈÓÓº®¹¯«äº®
                              
                              
                              °¯Òã ­©²Ó˯ÈmÓ©²ӂã ºÓºm¯ËäËÓÓº αÒ β‚¯ÈmÓË
                                    ÓÒË α ( A1 x + B1 y + C1 ) + β ( A2 x + B2 y + C2 ) = 0  ˰ˆ  ‚¯ÈmÓËÓÒË
                                    ÓË}ºˆº¯º®¹¯«äº®ÈÓÓºº¹‚}È


   iº}ÈÏȈËã°ˆmº
    
                                                            →
                                                             ∗       x∗
     ° {ºÏ äËä ÓË}ºˆº¯‚  ˆº}‚ r =                                ÓË °ºm¹ÈÈ ‚  ° m˯ ÒÓº® ¹‚}È Ò
                                                                     y∗
            ¹¯ÒäËäm}È˰ˆmË α = A2 x ∗ + B2 y ∗ + C2 Èm}È˰ˆmË β = − ( A1 x ∗ + B1 y ∗ + C1 ) 
     
                                                                                       →
            ~ÈäˈÒä ˆº α + β > 0  ¹º°}ºã }‚ ˆº}È r ∗  ÓË ¹¯ÒÓÈãËÎ҈ ÈÓÓ©ä ¹¯«
            ä©äºÓºm¯ËäËÓÓºz¯ºäˈºº¹¯«äÈ«
            
                  ( A2 x ∗ + B2 y ∗ + C2 ) ( A1 x + B1 y + C1 ) − ( A1 x ∗ + B1 y ∗ + C1 )( A2 x + B2 y + C2 ) = 0 
                                                            →
            ¹¯º²º҈ }È} ˯ËÏ ˆº}‚ r ∗  ˆÈ} Ò ˯ËÏ m˯ Òӂ ¹‚}È Ò °ã˺mȈËã Óº
            ¹¯ÒÓÈãËÎ҈¹‚}‚
       
       
       
  ° ‚°ˆ  A1 x + B1 y + C1 = 0 Ò A2 x + B2 y + C2 = 0 ¹È¯È¹Ë¯Ë°Ë}È Ò²°«¹¯«ä©²ÒÏ
         ¯È°°äȈ¯ÒmÈË人¹‚}ȈºÈºËmÒÓºˆº
         
                              α ( A1x + B1 y + C1 ) + β ( A2 x + B2 y + C 2 ) = 0 
         
         ¯Ò ªˆºä ‚¯ÈmÓËÓÒË (αA1 + βA2 ) x + (αB1 + βB2 ) y + (αC1 + βC 2 ) = 0  «mã«Ëˆ°«
            ‚¯ÈmÓËÓÒË乯«äº®¹º°}ºã }‚ÒÏ A1 + B1 > 0  A2 + B2 > 0 Ò α + β > 0 
            °ãË‚ˈˆº
            
                                                        αA1 + βA2 + α B1 + β B2 > 0 
            
            
            iË®°ˆm҈Ëã Óºº¹‚°ˆÒ乯ºˆÒmÓºË
            
                                                                  A1α + A2 β = 0
                                        
                                                                  B1α + B2 β = 0
            
            ¯«ä©Ë A1 x + B1 y + C1 = 0  Ò A2 x + B2 y + C 2 = 0  ¹º ¹º°ˆ¯ºËÓÒ  ÒäË ˆ ¹º
            }¯È®ÓË® ä˯Ë ºӂ º­‚  ˆº}‚ ºªˆºä‚ ºÓÒ ãÒ­º °ºm¹ÈÈ ˆ ãÒ­º
            ¹Ë¯Ë°Ë}È ˆ°« º ˆËº¯ËäË  ºÓÒ °ºm¹ÈÈ ˆ ˆºÈ Ò ˆºã }º ˆºÈ }ºÈ