Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 58 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
~ÈäËÈÓÒËºãÒÓˮө²Ó˯ÈmËÓ°mȲ
kÓÈãºÒÓººä}È}ãÒÓˮӺË¯ÈmÓËÓÒËÏÈÈËÓÈ¹ãº°}º°Ò¹¯«äãÒÓË®
ÓºËÓ˯ÈmËÓ°mº
0,0
>+>++
BACByAx
º¹¯ËËã«Ë¹ºã¹ãº°}º°äÓºÎ˰mºº
Ë} }ºº¯ÒÓÈ© }ºº¯©²
[
Ò
\
ºmãËmº¯« ÈÓÓºä Ó˯ÈmËÓ°m º¯ÈÓÒËÓÓ
¹¯«äº®
Ax By C A B++= + >00,
 º}ÈÎËä °¹¯ÈmËãÒmº° ÈÓÓºº m˯ÎËÓÒ«
ã«°ãÈ«}ºÈ¹¯«äÈ«
drnL
=
),(:
ËãÒ¹ãº°}º°
P
ÓÈmË¹ºã¹ãº°}º°Òºº
ÏÓÈÈËä©Ë
+
P
Ò
P
vä¯Ò°
rËäºmº¯Òºº}È
M
°¯ÈÒ°mË}º¯ºä
R
¹¯ÒÓÈãËÎÒ¹ºã¹ãº°}º
°Ò
+
P
ÒãÒ °ººmË°mËÓÓº
P
˰ãÒ °˰mË
0
>
λ
°ººmË°mËÓÓº
0
<
λ
È}ºË
º
=
nMM
λ
Ë
M
˰º¯ººÓÈãÓÈ«¹¯ºË}Ò«
M
ÓÈ¹¯«ä
L
ºÈÒäËË
ä˰º
˺¯ËäÈ

iã«ººº©
+
PM
Ó˺²ºÒäºÒº°ÈºÓºm©¹ºãÓËÓÒ«Ó˯È
mËÓ°mÈ
dRn
>
),(

iº}ÈÏÈËã°mº
iº}ÈÎËäÓ˺²ºÒ亰

°
+
PM
º˰ °˰mË
0
>
λ
È}ºËº
=
nMM
λ
|ËÓÒä
mËãÒÒÓ
),(
Rn
º°}ºã}
LM
º
dOMn
=
),(
ÒºÈ
dnndMMnOMnMMOMnRn
>+=+=+=
),(),(),(),(),(
λ
m°Òã¹ºãºÎÒËãÓº°Ò
λ

iº}ÈÎËäº°ÈºÓº°
°
dRn
>
),(
Ò
=
nMM
λ
ºÈm°Òã
dOMn
=
),(
¹ºãÈËä
dnndMMnOMnMMOMnRn
>+=+=+=
),(),(),(),(),(
λ

|}ÈÒÏ
on
°ãËËº
0
>
λ
ÒÏÓÈÒ
+
PM

˺¯ËäÈº}ÈÏÈÓÈ

ÈÈ

bjtjxqxznujrvvélqtjz
{, , }Og g
12
→→
tjwsvxrvxzqqwé¹uj¹
L
xyéjktn
tqnu
(, )nr r
→→
−=
0
0
 Ëjpzq éjxxzv¹tqn lv ëzvp wé¹uvp vz zv·rq
M

éjlqyxknrzvérvzvévp
r
x
y
1
1
1
=

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



~ÈäËÈÓÒ˺ãÒÓˮө²Ó˯ÈmËÓ°ˆmȲ
          
          
          kÓÈãºÒÓºˆºä‚}È}ãÒÓˮӺË‚¯ÈmÓËÓÒËÏÈÈˈÓȹ㺰}º°ˆÒ¹¯«ä‚ ãÒÓË®
ÓºËÓ˯ÈmËÓ°ˆmº Ax + By + C > 0 , A + B > 0 º¹¯ËËã«Ëˆ¹ºã‚¹ãº°}º°ˆ  äÓºÎ˰ˆmºˆº
Ë} }ºº¯ÒÓȈ© }ºˆº¯©² [ Ò \ ‚ºmãˈmº¯« ˆ ÈÓÓºä‚ Ó˯ÈmËÓ°ˆm‚  º¯ÈÓÒËÓӂ 
¹¯«äº® Ax + By + C = 0 ,                    A + B > 0  º}ÈÎËä °¹¯ÈmËãÒmº°ˆ  ÈÓÓºº ‚ˆm˯ÎËÓÒ«
                                                    → →
ã«°ã‚È«}ºÈ¹¯«äÈ« L : ( n , r ) = d Ëã҈¹ãº°}º°ˆ  P ÓÈm˹ºã‚¹ãº°}º°ˆÒº­º
ÏÓÈÈËä©Ë P+ Ò P−  vä¯Ò° 
                                                                                                    →
         r‚Ëäºmº¯Òˆ ˆºˆº}È M °¯È҂°mË}ˆº¯ºä R ¹¯ÒÓÈãËÎ҈¹ºã‚¹ãº°}º
°ˆÒ P+  ÒãÒ °ººˆmˈ°ˆmËÓÓº P−  ˰ãÒ °‚Ë°ˆm‚ˈ λ > 0  °ººˆmˈ°ˆmËÓÓº λ < 0  ˆÈ}ºË
            →          →
ˆº M ∗ M = λ n Ë M ∗ ˰ˆ º¯ˆººÓÈã ÓÈ«¹¯ºË}Ò« M Óȹ¯«ä‚  L ‘ºÈÒäËˈ
ä˰ˆº
         
 ‘˺¯ËäÈ        i㫈ººˆº­© M ∈ P+ Ó˺­²ºÒäºÒº°ˆÈˆºÓºm©¹ºãÓËÓÒ«Ó˯È
                     → →
                 mËÓ°ˆmÈ ( n , R) > d 
         
  iº}ÈÏȈËã°ˆmº
    
           iº}ÈÎËäÓ˺­²ºÒ亰ˆ
                                                                                                                →           →
                                                                                                                ∗
                   ‚°ˆ  M ∈ P+   ˆº ˰ˆ  °‚Ë°ˆm‚ˈ λ > 0  ˆÈ}ºË ˆº M M = λ n   |ËÓÒä
                                          → →                                               →       →
                   mËãÒÒӂ            ( n , R ) º°}ºã }‚ M ∗ ∈ L ˆº ( n , OM ∗ ) = d ÒˆºÈ
                                  → →           →   →          →           →        →      →        →                → →
                                 ( n , R ) = ( n , OM ∗ + M ∗ M ) = ( n , OM ∗ ) + ( n , M ∗ M ) = d + λ ( n , n ) > d 
                   
                   m°ÒスºãºÎ҈Ëã Óº°ˆÒ λ 
        
               iº}ÈÎË亰ˆÈˆºÓº°ˆ
                               → →                   →          →                               →       →
                   ‚°ˆ  ( n , R) > d Ò M ∗ M = λ n ˆºÈm°Òã‚ ( n , OM ∗ ) = d ¹ºã‚ÈËä
                                  → →         →     →          →          →         →      →        →                → →
                                ( n , R ) = ( n , OM ∗ + M ∗ M ) = ( n , OM ∗ ) + ( n , M ∗ M ) = d + λ ( n , n ) > d 
                                      →     →
                |ˆ}‚ÈÒÏ n ≠ o °ãË‚ˈˆº λ > 0 ÒÏÓÈ҈ M ∈ P+ 
                
        ‘˺¯ËäȺ}ÈÏÈÓÈ
            

                                                                         →     →
    ~ÈÈÈ              bjtjxqxznujrvvélqtjz {O, g1 , g 2 } tjwsvxrvxzqqwé¹uj¹ Lxyéjktn
                              → →        →
                         tqnu ( n , r − r0 ) = 0  Ëjpzq éjxxzv¹tqn lv ëzvp wé¹uvp vz zv·rq M
                                                                   →     x1
                         éjlqyxknrzvérvzvévp r1 =                           
                                                                         y1