Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 52 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
cÈÏËã
cÐlkÐj|vz|ve
zÈ} ©ãº ¹º}ÈÏÈÓº Ò°¹ºãϺmÈÓÒË °Ò°Ëä© }ºº¯ÒÓÈ °ÈÓÈmãÒmÈË mÏÈÒäÓº
ºÓºÏÓÈÓºË °ººmË°mÒË äËÎ äÓºÎ˰mºä ºË} ¹¯º°¯ÈÓ°mÈ Ò äÓºÎ˰mºä Ò²
¯ÈÒ°mË}º¯ºmwº m°mººË¯Ë¹ºÏmºã«Ë °m˰ÒÒ°°ã˺mÈÓÒË °mº®°mãÒÓÒ®
¹ºm˯²Óº°Ë®ÒãÒËã}ÒÏËÓÒäÓºÎ˰m¯ÈÒ°mË}º¯ºm°ººmË°mÒ²º
}Èäº¯ÈÏÒäÒ°°ãËËä©Ë˺äË¯Ò˰}ÒËºË}©
cÈÏËã¹º°m«ËÓäËºÈäº¹Ò°ÈÓÒ«ÒÒ°°ã˺mÈÓÒ«°mº®°m ¹ ¯º°ˮҲ˺
äË¯Ò˰}Ò² ºË}ºm  ¹¯«äº® Ò ¹ãº°}º°Ò  °¯Ë°mÈäÒ mË}º¯Óº® ÈãË¯© {
¯ÈÏËãȲÒÓȰº«˺¹º°ºÒ«Ò°¹ºãϺmÈ°«ººÏÓÈËÓÒ« }ºº¯ÒÓÈ©¹º
º°Òjix|qxx˯ËÏ
x
}ºº¯ÒÓÈ©¹ºº°Òvélqtjz˯ËÏ
y
Ò}ºº¯ÒÓÈ©¹ºº°Òjwwsq
rjz˯ËÏ
z
¯ÈmÓº}È}Ò°ÈÓȯÓ©ËÁº¯ä©ÏȹҰÒ¯ÈmÓËÓÒ®
¯«äÈ«ÓÈ¹ãº°}º°Ò
°ÈÓÈ°Ò°ËäÈ}ºº¯ÒÓÈ
{, , }
Og g
12
→→
Ó È¹ãº°}º°ÒÒ¹¯«äÈ«
L
¹¯º²º«È«
˯ËÏº}
r
x
y
0
0
0
=
°ãËÎÈÒäÓÈÓË®tntysnkumË}º¯ºä
a
a
a
x
y
=

|¹¯ËËãËÓÒË

{Ë}º¯
D
ÓÈÏ©mÈË°«tjwéjks¹íquknrzvévu¹¯«äº®
L

˺¯ËäÈ

lÓºÎ˰mº¯ÈÒ°mË}º¯ºmºË}ÓÈ¹¯«äº®
L
¹¯Ë°ÈmÒäºmË
rr a
→→
=+
0
τ
Ë
τ
-
¹¯ºÒÏmºãÓ©®mË˰mËÓÓ©®¹È¯ÈäË¯
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          
          
          
          
          
          
          
          
          
cÈÏËã
cÐlkÐj|vz|v‘e
            
            

        
        zÈ} ­©ãº ¹º}ÈÏÈÓº Ò°¹ºã ϺmÈÓÒË °Ò°ˆËä© }ºº¯ÒÓȈ ‚°ˆÈÓÈmãÒmÈˈ mÏÈÒäÓº
ºÓºÏÓÈÓºË °ººˆmˈ°ˆmÒË äË΂ äÓºÎ˰ˆmºä ˆºË} ¹¯º°ˆ¯ÈÓ°ˆmÈ Ò äÓºÎ˰ˆmºä Ò²
¯È҂°mË}ˆº¯ºm wˆº m °mº  º˯Ë  ¹ºÏmºã«Ëˆ °m˰ˆÒ Ò°°ã˺mÈÓÒË °mº®°ˆm ãÒÓÒ®
¹ºm˯²Óº°ˆË®ÒãÒˆËã}ÒςËÓÒ äÓºÎ˰ˆm¯È҂°mË}ˆº¯ºm°ººˆmˈ°ˆm‚ Ò²ˆº
}È亭¯Èς ÒäÒ°°ãË‚Ëä©Ë˺äˈ¯Ò˰}Ò˺­žË}ˆ©
        
        cÈÏË㹺°m«ËÓäˈºÈ亹ҰÈÓÒ«ÒÒ°°ã˺mÈÓÒ«°mº®°ˆm¹¯º°ˆË® Ò²˺
äˈ¯Ò˰}Ò² º­žË}ˆºm  ¹¯«äº® Ò ¹ãº°}º°ˆÒ  °¯Ë°ˆmÈäÒ mË}ˆº¯Óº® ÈãË­¯© {
¯ÈÏËãȲÒÓȰˆº«Ëº¹º°º­Ò«­‚‚ˆÒ°¹ºã ϺmȈ °«º­ºÏÓÈËÓÒ«}ºº¯ÒÓȈ©¹º
º°Òjix|qxx˯ËÏ x }ºº¯ÒÓȈ©¹ºº°Òvélqtjz˯ËÏ yÒ}ºº¯ÒÓȈ©¹ºº°Òjwwsq
rjz˯ËÏz¯ÈmÓº}È}Ò°ˆÈÓȯˆÓ©ËÁº¯ä©ÏȹҰÒ‚¯ÈmÓËÓÒ®
        
        
        
        
¯«äÈ«Óȹ㺰}º°ˆÒ
            
            
            
                                                                      →    →
            ‚°ˆ ÈÓȰҰˆËäÈ}ºº¯ÒÓȈ {O, g1 , g 2 } Óȹ㺰}º°ˆÒÒ¹¯«äÈ«L¹¯º²º«È«
                     →       x0                                       →   ax
˯Ëψº}‚ r0 =               °ãËÎȝÒäÓÈÓË®tntysnk€umË}ˆº¯ºä a =    
                             y0                                           ay
            
            
            
                                     →
 |¹¯ËËãËÓÒË            {Ë}ˆº¯ D ÓÈÏ©mÈˈ°«tjwéjks¹íquknrzvévu¹¯«äº®L
 
            
            
            
 ‘˺¯ËäÈ                lÓºÎ˰ˆmº¯È҂°mË}ˆº¯ºmˆºË}Óȹ¯«äº® L¹¯Ë°ˆÈmÒäºmmÒË
                  →      →         →
                          r = r0 + τ a Ëτ-¹¯ºÒÏmºã Ó©®m˝˰ˆmËÓÓ©®¹È¯Èäˈ¯