Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 8 стр.

UptoLike

Составители: 

Рубрика: 

12
Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
cÈÏËã
{pz|ch
jjspqshp|pck¡jjvsjlj
lÈ¯ÒÓ©ËºË}©
kÓÈãÒÒË°}ºËº¹Ò°ÈÓÒË˺äË¯ÒË°}Ò²ÁÒ¯Ò Ëã¯ÈmÓº}È}Ò º¹Ë¯ÈÒ®°
ÓÒäÒ äºÎË ©mºãºä Ò°ãË °ãÈËm ¹¯ºËÓº ÏÈ °Ë Ò°¹ºãϺmÈÓÒ«
°¹ËÒÈãÓººäÈËäÈÒË°}ºººË}ÈÓÈÏ©mÈË人ujzéq|np
|¹¯ËËãËÓÒË

Îjzéq|npéjounéj
m
[
n
ÓÈÏ©mÈË°«¹º¯«ºËÓÓÈ«¹¯«äººãÓÈ«È
ãÒÈÒãÒäÈ°°ÒmÒ°Ëã°ºË¯ÎÈÈ«
m
°¯º}Ò
n
°ºãºm
Ò°ãÈm²º«ÒË m º¹Ò°ÈÓÒËäÈ¯Ò© ÓÈÏ©mÈËä©ËËËësnuntzjuqÒãÒ rvuwv
tntzjuq ²È¯È}˯ÒÏ°« }È} °mºÒä ÏÓÈËÓÒËä È} Ò Óºä˯ÈäÒ °¯º} Ò °ºãºm
°ãºmÒä°«ººÏÓÈÈªãËäËÓäÈ¯Ò©¯È°¹ºãºÎËÓÓ©®m
i
®°¯º}ËÒ
j
ä°ºãË
}È}
ji
α

|¹¯ËËãËÓÒË

Ò°ãÈ
m

n
Ò
m
[
n
ÓÈÏ©mÈ°«éjounéjuqäÈ¯Ò©
lÈ¯Ò©ººÏÓÈÈ°«ÒÏȹҰ©mÈ°«¹Ë¯ËÒ°ãËÓÒËäÒ²ªãËäËÓºmsȹ¯Ò
ä˯}È}ujzéq|jxësnuntzjuq
],1[;],1[;
njmi
ji
==
α
,ÒãÒÎËm¯ÈÏm˯Óº®Áº¯äË
ααα α
ααα α
ααα α
ααα α
ααα α
ααα α
ααα α
ααα α
11 12 13 1
21 22 23 2
31 32 33 3
123
11 12 13 1
21 22 23 2
31 32 33 3
123
...
...
...
... ... ... ... ...
...
;
...
...
...
... ... ... ... ...
...
n
n
n
mm m mn
n
n
n
mm m mn
;
...
...
...
... ... ... ... ...
...
ααα α
ααα α
ααα α
ααα α
11 12 13 1
21 22 23 2
31 32 33 3
123
n
n
n
mm m mn


ÒÈË°«Ùjs{j
i
j
Ù
12 Ë }  Ò Ò   } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          
          
          
          
          
          
cÈÏËã
{pz‘|ch
jjspqshp|pck¡jjvsjlj
            
            
            
            
lȈ¯Òө˺­žË}ˆ©
            
            
            
            kÓÈã҈ÒË°}ºË º¹Ò°ÈÓÒË ˺äˈ¯ÒË°}Ò² ÁÒ‚¯ Ò ˆËã ¯ÈmÓº }È} Ò º¹Ë¯ÈÒ® °
ÓÒäÒ äºÎˈ ­©ˆ  m ­ºã ºä Ò°ãË °ã‚ÈËm ‚¹¯ºËÓº ÏÈ °ˈ Ò°¹ºã ϺmÈÓÒ«
°¹ËÒÈã ÓººäȈËäȈÒË°}ººº­žË}ˆÈÓÈÏ©mÈË人ujzéq|np
            
            
  |¹¯ËËãËÓÒË       Îjzéq|npéjounéj m[nÓÈÏ©mÈˈ°«‚¹º¯«ºËÓÓÈ«¹¯«äº‚ºã ÓÈ«ˆÈ­
  
                     ãÒÈ ÒãÒäÈ°°Òm Ò°Ëã°º˯Îȝȫm°ˆ¯º}Òn °ˆºã­ºm
            
            
              Ò°ãÈ m²º«ÒË m º¹Ò°ÈÓÒË äȈ¯Ò© ÓÈÏ©mÈËä©Ë ËË ësnuntzjuq ÒãÒ rvuwv
tntzjuq  ²È¯È}ˆË¯Òς ˆ°« }È} °mºÒä ÏÓÈËÓÒËä ˆÈ} Ò Óºä˯ÈäÒ °ˆ¯º} Ò °ˆºã­ºm
°ãºmÒä°«º­ºÏÓÈȈ ªãËäËӈäȈ¯Ò©¯È°¹ºãºÎËÓÓ©®m i®°ˆ¯º}ËÒ jä°ˆºã­Ë
}È} α i j  
            
            
  |¹¯ËËãËÓÒË        Ò°ãÈmnÒm[nÓÈÏ©mÈ ˆ°«éjounéjuqäȈ¯Ò©
  
            
            
            lȈ¯Ò©º­ºÏÓÈÈ ˆ°«ÒÏȹҰ©mÈ ˆ°«¹Ë¯ËÒ°ãËÓÒËäÒ²ªãËäËӈºmsȹ¯Ò
ä˯}È}ujzéq|jxësnuntzjuq α i j ; i = [1, m] ; j = [1, n] ,ÒãÒÎËm¯ÈÏm˯ӂˆº®Áº¯äË

     α11 α12        α13      ... α1n             α11 α12           α13      ... α1n               α11 α12           α13      ... α1n
                                                α
     α 21 α 22      α 23     ... α 2 n                α 22          α 23     ... α 2 n             α 21 α 22         α 23     ... α 2 n
                                                   21                                   
     α 31 α 32      α 33     ... α 3n        ; α 31 α 32           α 33     ... α 3n  ;           α 31 α 32         α 33     ... α 3n 
                                                                                      
     ...   ...       ...     ... ...            ...   ...           ...     ... ...                ...  ...          ...     ... ...
                                               α m1 α m2
     α m1 α m2      α m3     ... α mn                               α m3     ... α mn             α m1 α m2         α m3     ... α mn

    ҈Èˈ°«Ùjs{jijÙ