Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 9 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
13
{Ë}º¯©ÒãÒÓˮөËº¹Ë¯ÈÒÒ°ÓÒäÒ
ÒÏ }ºº¯©² ä© Ëä Ò°¹ºãϺmÈ ¹º°ãËÓ p°ãÒ ÎË ÓÈä ¹º¯ËË°« tnéjoknéty
zvn¹¯Ë°ÈmãËÓÒËäÈ¯Ò©ºä©ËäËËÏȹҰ©mÈmmÒË
α
ij
ÒãÒ¹¯º°º
A

lÈ¯Ò©¹¯ÒÓ«º}ãÈ°°ÒÁÒÒ¯ºmÈ¹º}ºãÒË°mÒ²°¯º}Ò°ºãºm
|¹¯ËËãËÓÒË

p°ãÒ
nm
=
ºäÈ¯ÒÈÓÈÏ©mÈË°«rkjléjztvpwvé¹lrj
Q

lÈ¯ÒÈ ¯ÈÏä˯È
m
[
ÓÈÏ©mÈË°«
m
ä˯өä ÒãÒ
m
}ºä¹ºÓËÓÓ©ä
xzvsi|vu lÈ¯ÒÈ ¯ÈÏä˯È
[
n
ÓÈÏ©mÈË°«
n
ä˯Ӻ® ÒãÒ
n
}ºä¹ºÓËÓÓº®xzévrvp
|äËÒäº²º«Áº¯äÈãÓºã«ººÏÓÈËÓÒ«°¯º}ÒãÒ°ºãºm°ãËËÒ°
¹ºãϺmÈ m²ÒÓË}°Ó©Ë ÏȹҰÒ
α
1j
ÒãÒ
1
i
β
 ÓË äËÓ«ÒË°« ÒÓË}°© ¹¯ÒÓ«º
º¹°}Èm¯ËÏãÈË˺ººÏÓÈËÓÒ«°¯º}ÒãÒ°ºãºm¹¯ÒÓÒäÈ
α
j
ÒãÒ
°ººmË°mËÓÓº
i
β
 { ªÒ² °ãÈ«² ¯ÈÏäËË°« Ó˺²ºÒäº «mÓº }ÈÏ©mÈ º Ëä
ÒË¯Ëº°¯º}ËÒãÒº°ºãË
sË}ºº¯©Ë È°º Ò°¹ºãÏËä©Ë äÈ¯Ò© ° º°º©äÒ ÏÓÈËÓÒ«äÒ ªãËäËÓºm
ÒäË°¹ËÒÈãÓ©ËÓÈÏmÈÓÒ«ÒººÏÓÈËÓÒ«
|¹¯ËËãËÓÒË

zmȯÈÓÈ« äÈ¯ÒÈ ã« }ºº¯º®
],1[,,
nji
ijji
==
αα
 ÓÈÏ©mÈË°« xqu
unzéq·nxrvp
lÈ¯ÒÈ
O
m°ËªãËäËÓ©}ºº¯º®¯ÈmÓ©ÓãÓÈÏ©mÈË°«tysnkvp
zmȯÈÓÈ«äÈ¯ÒÈ
E
¹º¯«}È
n
mÒÈ
100 0
010 0
001 0
000 1
...
...
...
... ... ... ... ...
...
ÓÈÏ©mÈË°«nlqtq·tvp
c È Ï  Ë ã                                                      13
{Ë}ˆº¯©ÒãÒÓˮө˺¹Ë¯ÈÒÒ°ÓÒäÒ



ÒÏ }ºˆº¯©² ä© ­‚Ëä Ò°¹ºã ϺmȈ  ¹º°ãËÓ                                                                     p°ãÒ ÎË ÓÈä ¹ºˆ¯Ë­‚ˈ°« tnéjoknéty
zvn¹¯Ë°ˆÈmãËÓÒËäȈ¯Ò©ˆºä©­‚ËäËËÏȹҰ©mȈ mmÒË α ij ÒãÒ¹¯º°ˆº A 
          
          
          lȈ¯Ò©¹¯ÒÓ«ˆº}ãÈ°°ÒÁÒÒ¯ºmȈ ¹º}ºãÒË°ˆm‚Ò²°ˆ¯º}Ò°ˆºã­ºm
          
          
  |¹¯ËËãËÓÒË  p°ãÒ m = n ˆºäȈ¯ÒÈÓÈÏ©mÈˈ°«rkjléjztvpwvé¹lrjQ
         
                lȈ¯ÒÈ ¯ÈÏä˯È m[ ÓÈÏ©mÈˈ°« mä˯өä ÒãÒ m}ºä¹ºÓËӈөä 
                xzvsi|vu lȈ¯ÒÈ ¯ÈÏä˯È [n ÓÈÏ©mÈˈ°« nä˯Ӻ® ÒãÒ n
                }ºä¹ºÓËӈӺ® xzévrvp
          
          
          |ˆäˈÒ䈺²ºˆ«Áº¯äÈã Ӻ㫺­ºÏÓÈËÓÒ«°ˆ¯º}ÒãÒ°ˆºã­ºm°ãË‚ˈÒ°
¹ºã ϺmȈ  m‚²ÒÓË}°Ó©Ë ÏȹҰÒ α1 j  ÒãÒ β i1  ÓË äËÓ« ÒË°« ÒÓË}°© ¹¯ÒÓ«ˆº

º¹‚°}Ȉ m¯Ëς㠈ȈË˺º­ºÏÓÈËÓÒ«°ˆ¯º}ÒãÒ°ˆºã­ºm¹¯ÒÓÒäÈ ˆmÒ α j ÒãÒ
°ººˆmˈ°ˆmËÓÓº β i  { ªˆÒ² °ã‚È«² ¯ÈςäËˈ°« Ó˺­²ºÒäº «mÓº ‚}ÈÏ©mȈ  º Ëä
Òˈ¯Ë º°ˆ¯º}ËÒãÒº°ˆºã­Ë
         
         
         sË}ºˆº¯©Ë È°ˆº Ò°¹ºã ςËä©Ë äȈ¯Ò© ° º°º­©äÒ ÏÓÈËÓÒ«äÒ ªãËäËӈºm
ÒäË ˆ°¹ËÒÈã Ó©ËÓÈÏmÈÓÒ«Òº­ºÏÓÈËÓÒ«
         
         
 |¹¯ËËãËÓÒË zmȯȈÓÈ« äȈ¯ÒÈ ã« }ºˆº¯º® α i j = α ji ,∀i, j = [1, n]  ÓÈÏ©mÈˈ°« xqu
 
               unzéq·nxrvp
               
               
                                  lȈ¯ÒÈ O m°ËªãËäËӈ©}ºˆº¯º®¯ÈmÓ©ӂã ÓÈÏ©mÈˈ°«tysnkvp
                                  
                                  
                                  zmȯȈÓÈ«äȈ¯ÒÈ E                                        ¹º¯«}ÈnmÒÈ
                                  
                                                                                                    1        0        0      ...       0
                                                                                                    0        1        0      ...       0
                                                                                                    0        0        1      ...       0       
                                                                                                   ... ... ... ... ...
                                                                                                    0        0        0      ...       1
                                  
                                  ÓÈÏ©mÈˈ°«nlqtq·tvp